
ADAPTIVE CACHE REPLACEMENT TECHNIQUE

Dinesh Dasarathan and Santhosh Kulandaiyan
School of Computer Science and Engineering

 College of Engineering, Guindy
Anna University, Chennai-25.

Abstract:
 In this poster we describe an adaptive cache
replacement technique that aims at adapting itself to
the program’s cache access behavior by keeping track
of the recentness of cache access and the frequency of
cache access. The key to our technique is a parameter
which is adjusted dynamically as the program proceeds
in execution, so as to give frequency of access
importance over the recentness of access or vice versa.

1. Introduction:
 Memory access is one of the most time
consuming jobs in computer systems. In the recent
past, while CPU performance has increased at a rapid
rate, memory access has not quite kept pace with it.
Since in memory systems, cache plays a very
important part, a lot of techniques have been proposed
to improve the efficiency of the cache accesses. We
propose a block replacement technique which adapts
itself to the access pattern of the application.
 Basically in caches, the most important
problem lies in identifying which block to replace
when we get a cache miss after all the blocks in the
cache are filled up. Now in caches, instruction caches
have a higher temporal locality than data caches, which
means that if a block is accesed now, there is a high
probability that it will be accessed in the near future
also. Instruction caches also exhibit spatial locality
according to which items whose addresses are near to
one another tend to be referenced close together in
time. This locality of reference also applies to data
caches, but not as strongly as it does to instruction
caches. Therefore we aim at achieving higher locality
of reference in data caches.

2. Concept Involved:
 Our poster tries to exploit two dimensions
which are very important when we determine which
block in the cache has to be replaced.
 1. Frequency of access: The number of hits
for the cache block
 2. Recentness of access: The time since the
last hit has occurred; this denotes the number of cache
references that have taken place to other blocks since
this cache block was last accessed.
 Until the program begins to execute, we have
little knowledge about the spatial and temporal locality
that the program has got to offer. At a given instance

of time, the program's data requirements may be such
that it frequently accesses the block which has been
accessed the most number of times or it frequently
accesses the block that has been accessed the latest in
time. So we can have an efficient block replacement
technique if we have a parameter that adjusts itself to
the requirements of the program - i.e.) by assigning
more priority to one of the two dimensions, namely
number of hits or time elapsed. This parameter is
called α.

Using the parameter α we determine γ which
is represented as

γ = (f1 (α)*1 f2 (hits)) *2 (g1(α) *3 g2 (time))

where *1, *2 and *3 are operations that vary from one
implementation to the other. In this poster we have
tried to project one such implementation. The
functions f1, f2, g1, g2 are again implementation
dependent. The purpose of α is to give weightage to
either the hits or the time elapsed while we determine
which block to eliminate. γ is the actual value based
upon which we choose a block for replacement.
 Later in this poster we have described a pair
of simple algorithms to modify α dynamically, thereby
adapting to the program’s data access patterns.

3. Implementation:
 For this implementation we maintain a data
structure called ARU (adaptive replacement unit) that
consists of many records. Each record consists of the
following fields namely; block number (BN), number
of hits (NOH) and time since last access (TLA). We
shall discuss these parameters along with α in the
following sections. �
����D�

α is stored in memory (or a register) and it
occupies one byte of space. In binary representation if
α is given the value of 0000 0001 then it gives a higher
priority to Time elapsed than what it gives to the
Number of hits. If α is given a value of 0000 0011
then it still gives a higher priority to time elapsed than
what it does to the number of hits but the difference is
somewhat lesser than in the previous case. A value of
0000 1111 indicates equal priority to both hits and time

elapsed. This goes on till α reaches a value of 1111
1111 where time elapsed is given least priority and the
number of hits is given the most priority.

3.2 Block Number:
 Block Number denotes the tag number of the
block if the cache is fully associative and denotes the
set number and tag number if the cache is set
associative.

3.3 Number of hits:
 Number of hits of a block specifies the total
number of times the block has been accessed from its
most recent arrival into the cache. When a block is
brought from main memory to cache, its corresponding
NOH is set to the value 0000 0001. Whenever this
block is accessed we left shift once (with 1 entering at
the LSB) so that after 4 accesses the value of NOH
becomes 0000 1111. NOH acts like a saturating
counter in the sense that, once the value becomes 1111
1111(8 accesses) any further accesses will leave NOH
unchanged.

3.4 Time since last access:
 Time since last access denotes the number of
cache accesses that have taken place to other blocks
since this block was last accessed. Initially, when the
block is brought from main memory to cache, the TLA
field of this block is set to the value of all 1s,
indicating that this is the most recently accessed block.
Whenever an access to another block takes place we
right shift once (with 0 entering at the MSB) so that
0001 1111 denotes that the 3 most recent accesses did
not access this block. TLA too acts like a saturating
counter, i.e., once TLA reaches the value 0000 0000(8
recent accesses did not access this block) even if the
next access did not target this block, then too the value
remains unchanged.

3.5 Determining the functions:
 In this poster we have presented one
implementation for the calculation of γ given by the
formula

γ = (f1 (α)*1 f2 (hits)) *2 (g1 (α)*3 g2 (time)).

A lower value of γ denotes that the corresponding
block is more suitable to be replaced. We took into
consideration 2 factors in determining the functions:
 1) The minimality of hardware required to
implement the functions.
 2) The accurateness of γ in determining the
block to be replaced.

Based on the above we deduced the following
functions:

f1 (α) = α
f2 (hits) = NOH (for e.g. if hits=4 then
 f2 (hits) =0000 1111).This can actually
 be implemented in hardware using a
 Left Shift Unit with 1s entering from the
 right side.
g1 (α) = The one’s complement of α normalized to
 the right. (For e.g. if α =0000 0011 then
 1s comp α =1111 1100 and normalized
 value=0011 1111). This can be
 implemented in hardware using a Not
 Unit and a Shift Unit.
g2 (time) = TLA (for e.g. if time=3 then
 g2 (time) =0001 1111).This can also be I
 implemented using a Right Shift Unit
 with 0s entering from the left side.

3.6 Determining the Operators:
The operators *1, *2 and *3 were deduced as follows:
*1, *3 = Bitwise And
*2 = Taking bitwise 1’s complement of both the
 operands from the LSB until the first 0 is
 encountered for which a 1 is substituted.
 Leave the other zeroes intact. After this the
 Bitwise OR is performed for both operands.

4 Example:
 We consider 2 blocks and decide on which
block to replace.

Block1 has the following values .
NOH = 0011 1111 (6 hits)
TLA = 0000 0111(5 slots)

Block2 has the following values.
NOH = 0000 0011(2 hits)
TLA = 0111 1111(1 slot)

Slots here denote the number of cache references since
this block was last accessed. Now let us consider 2
values of α to determine which block to replace.
Case1: α = 0001 1111
Block1
f1 (α) = 0001 1111 f2 (hits) = 0011 1111
g1 (α) = 0000 0111 g2 (time) = 0000 0111

Performing the operations as described above, we get
the following result for γ.

f1 (α)*1 f2 (hits) = 0001 1111
 g1 (α)*3 g2 (time) = 0000 0111

The intermediate step in *2 is shown:
 0001 1111 is converted to 0010 0000
 0000 0111 is converted to 0000 1000

The final result is obtained by bitwise ORing the two
values and we obtain
 γ = 0010 1000

Block2
f1 (α) = 0001 1111 f2 (hits) = 0000 0011
g1 (α) = 0000 0111 g2 (time) = 0111 1111

Performing the operations as described above, we get
the following result for γ.

f1 (α)*1 f2 (hits) = 0000 0011
 g1 (α)*3 g2 (time) = 0000 0111

The intermediate step in *2 is shown:
 0000 0011 is converted to 0000 0100
 0000 0111 is converted to 0000 1000

The final result is obtained by bitwise ORing the two
values and we obtain
 γ = 0000 1100

Since the value of γ is lower for the 2nd block, it is
selected for replacement. This was because, we
assigned the value of α so that it gave priority to the
number of hits rather than the time slots. This resulted
in block1 to have a greater value of γ and thereby
preventing itself from being replaced.

Case2: α = 0000 0011
Block1
f1 (α) = 0000 0011 f2 (hits) = 0011 1111
g1 (α) = 0011 1111 g2 (time) = 0000 0111

Performing the operations as described above, we get
the following result for γ.

f1 (α)*1 f2 (hits) = 0000 0011
 g1 (α)*3 g2 (time) = 0000 0111

The intermediate step in *2 is shown:
 0000 0011 is converted to 0000 0100
 0000 0111 is converted to 0000 1000

The final result is obtained by bitwise ORing the two
values and we obtain
 γ = 0000 1100

Block2
f1 (α) = 0000 0011 f2 (hits) = 0000 0011
g1 (α) = 0011 1111 g2 (time) = 0111 1111

Performing the operations as described above, we get
the following result for γ.

f1 (α)*1 f2 (hits) = 0000 0011
 g1 (α)*3 g2 (time) = 0011 1111

The intermediate step in *2 are shown:
 0000 0011 is converted to 0000 0100
 0011 1111 is converted to 0100 0000

The final result is obtained by bitwise ORing the two
values and we obtain
 γ = 0100 0100

Since the value of γ is lower for the 1st block, it is
selected for replacement. This was because, we
assigned the value of α so that it gave priority to the
time since last accessed rather than the number of hits.
This resulted in block2 to have a greater value of γ and
thereby preventing itself from being replaced.

5 Adaptive Algorithms:
 The value of α determines which has a higher
priority, the number of hits or the time since last
access, in choosing a block for replacement. For a
particular program, if the value of α that exists doesn’t
work well (i.e. blocks in the cache still keep missing)
then it means that the value of α has to shift so that it
gives priority the other way around (i.e. if initially α
gives priority to number of hits and cache misses still
occur then the value of α has to be shifted so that it
now gives priority to the time elapsed).

We propose 2 algorithms by which we can vary α so
that the cache replacement policy can adapt to the
program.

5.1 Constant Hopping Algorithm: (Hop Step=1)

1. Start from a value of α, say equal priority to both
time and number of hits and note the number of
misses/unit time (MT). (Note that MT is obtained after
every ‘n’ time slots).

2. Increase the value of α so that it moves towards
giving the number of hits a higher priority. We also
maintain a single bit called direction bit (DB) which
states the direction of motion of α (1 indicates that α
was previously incremented, 0 indicates that α was
previously decremented).

3. Compare the new value of MT with the old value. If
it is lesser, hop along the same direction. i.e. if DB=1,

increment α and if DB=0, decrement α.(Incrementing
α value is to move alpha towards giving the number of
hits a higher priority and decrementing α value is to
move α towards giving the time since last access
higher priority).

4. If the new value of MT is higher, then the direction
in which α hopped previously was not efficient.
Therefore, depending on the DB value, hop in the
reverse direction. i.e. if DB=1, then decrement α and if
DB=0, increment α. Reverse the value of DB (i.e. if
DB were 1 it becomes 0 and if it were 0 it becomes 1).

5. After n time slots calculate the value of MT and Go
to step3.

5.2 Variable Hopping Algorithm: (Hop Step is
variable)

1. Start from a value of α, say equal priority to both
time and number of hits and note down the number of
misses/unit time (MT).

2. Increase the value of α so that it moves towards
giving the number of hits a higher priority. We also
maintain a single bit called direction bit (DB) which
states the direction of motion of α (1 indicates that α
was previously incremented, 0 indicates that α was
previously decremented).

3. Compare the new value of MT with the old value. If
it is lesser, hop along the same direction by 2 steps. i.e.
if DB=1, increment α by 2 and if DB=0, decrement α
by 2.

4. If the new value of MT is higher, then the direction
in which α hopped previously was not efficient.
Therefore, depending on the DB value, hop in the
reverse direction by 1 step. i.e. if DB=1, then
decrement α by 1and if DB=0, increment α by 1 .
Reverse the value of DB (i.e. if DB were 1 it becomes
0 and if it were 0 it becomes 1).

5. After n time slots calculate the value of MT and Go
to step3.

5.3 Example for Adaptive Hopping Algorithms:

Table 1: Constant Hopping Algorithm
DB = Direction Bit MT= misses/unit time

In Table 1, we start with an α value of 4 .Initially we
increase α to 5. Since it shows increasing performance
(since MT decreases from 20 to 18) α further hops
along the same direction to 6. At this point MT
increases from 18 to 22.So we decrease the value of
α by one and reverse DB (i.e., make it 0).

Table 2: Variable Hopping Algorithm
DB = Direction Bit MT= misses/unit time

In Table 2, we start with a α value of 4. (The main
difference from the previous algorithm is that we use
variable hops for α - 1, 2 instead of a constant hop,
namely 1).Initially we increase α to 5. Since it shows
increase in performance we now increase α by a
variable hop, namely 2, to 7.This results in decrease of
performance and hence we invert DB and decrease α
by 1.The process repeats as shown.

6 Future Work:
 We can enhance the logic put forth by this
poster by 2 means:

During each computation, maintain a lower
cutoff or threshold for the value of γ using the
previously obtained value for it. At the current
computation if a block crosses this cutoff then that
block can be selected for replacement without
attempting to calculate the γ values of other blocks.
This reduces computational time involved in selecting
the block for replacement. Further a Buffer is
maintained to store the present block contents. Even as
data is given from this buffer we can simultaneously

α 4 5 6 5 4 3 4 5

DB 1 1 0 0 0 1 1 --

MT 20 18 22 21 20 23 21

α 4 5 7 6 4 2 3 5

DB 1 1 0 0 0 1 1 --

MT 20 19 23 22 20 24 23 --

determine which block has to be replaced. The idea
here is that the program shouldn’t stall while we
determine the block for replacement.

7 Conclusion:

In this poster we have proposed a technique to
dynamically alter the replacement technique allowing
it to range from the Least Recently Used replacement
policy to the Least Frequently Used replacement policy
depending on the program’s access behavior. We hope
that this technique could provide a good combination
of both the above policies in trying to exploit cache
behavior, thereby reducing the number of overall
misses that can occur.

References:

1) David A Patterson and John L Hennessy “Computer
Architecture A Quantitative Approach – 2/e” Morgan
Kaufmann Publishers 1996.

2) Hill, Mark D. “Aspects of Cache Memory and
Instruction Buffer Performance.” Ph.D. Th., University
of California, Berkeley, 1987.

3) Jouppi, Norman P. “Improving Direct-mapped
Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers”

4) Agarwal A. “Analysis of Cache Performances for
Operating Systems and MultiProgramming” Ph.D. Th.,
Stanford University, 1987 ,Tech Report No. CSL-TR-
87-332(May)

5) Vijayalakshmi Srinivasan “Improving Performance
of an L1 Cache with an Associated Buffer” Electrical
Engineering , University of Michigan , Feb 12 ,1998.

