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Abstract: 
 In this poster we describe an adaptive cache 
replacement technique that aims at adapting itself to 
the program’s cache access behavior by keeping track 
of the recentness of cache access and the frequency of 
cache access. The key to our technique is a parameter 
which is adjusted dynamically as the program proceeds 
in execution, so as to give frequency of access 
importance over the recentness of access or vice versa.  
 
1. Introduction: 
 Memory access is one of the most time 
consuming jobs in computer systems. In the recent 
past, while CPU performance has increased at a rapid 
rate, memory access has not quite kept pace with it. 
Since in memory systems, cache plays a very 
important part, a lot of techniques have been proposed 
to improve the efficiency of the cache accesses. We 
propose a block replacement technique which adapts 
itself to the access pattern of the application. 
 Basically in caches, the most important 
problem lies in identifying which block  to replace 
when we get a cache miss after all the blocks in the 
cache are filled up. Now in caches, instruction caches 
have a higher temporal locality than data caches, which 
means that if a block is accesed now, there is a high 
probability that it will be accessed in the near future 
also. Instruction caches also exhibit spatial locality 
according to which items whose addresses are near to 
one another tend to be referenced close together in 
time. This locality of reference also applies to data 
caches, but not as strongly as it does to instruction 
caches. Therefore we aim at achieving higher locality 
of reference in data caches. 
 
2. Concept Involved: 
 Our poster tries to exploit two dimensions 
which are very important when we determine which 
block in the cache has to be replaced. 
 1. Frequency of access: The number of hits 
for the cache block 
 2. Recentness of access: The time since the 
last hit has occurred; this denotes the number of cache 
references that have taken place to other blocks since 
this cache block was last accessed. 
 Until the program begins to execute, we have 
little knowledge about the spatial and temporal locality 
that the program has got to offer. At a given instance 

of time, the program's data requirements may be such 
that it frequently accesses the block which has been 
accessed the most number of times or it frequently 
accesses the block that has been accessed the latest in 
time. So we can have an efficient block replacement 
technique if we have a parameter that adjusts itself to 
the requirements of the program - i.e.) by assigning 
more priority to one of the two dimensions, namely 
number of hits or time elapsed. This parameter is 
called α.

Using the parameter α we determine γ which 
is represented as 
 

γ = (f1 (α)*1 f2 (hits)) *2 (g1(α) *3 g2 (time)) 
 
where *1, *2 and *3 are operations that vary from one 
implementation to the other. In this poster we have 
tried to project one such implementation. The 
functions f1, f2, g1, g2 are again implementation 
dependent. The purpose of  α is to give weightage to 
either the hits or the time elapsed while we determine 
which block to eliminate. γ is the actual value based  
upon which we choose a block for replacement. 
 Later in this poster we have described a pair 
of simple algorithms to modify α dynamically, thereby 
adapting to the program’s data access patterns. 
 
3. Implementation: 
 For this implementation we maintain a data 
structure called ARU (adaptive replacement unit) that 
consists of many records. Each record consists of the 
following fields namely; block number (BN), number 
of hits (NOH) and time since last access (TLA). We 
shall discuss these parameters along with α in the 
following sections. �
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α is stored in memory (or a register) and it 
occupies one byte of space. In binary representation if 
α is given the value of 0000 0001 then it gives a higher 
priority to Time elapsed than what it gives to the 
Number of hits. If α is given a value of 0000 0011 
then it still gives a higher priority to time elapsed than 
what it does to the number of hits but the difference is 
somewhat lesser than in the previous case. A value of 
0000 1111 indicates equal priority to both hits and time 



elapsed. This goes on till α reaches a value of 1111 
1111 where time elapsed is given least priority and the 
number of hits is given the most priority. 
 
3.2 Block Number: 
 Block Number denotes the tag number of the 
block if the cache is fully associative and denotes the 
set number and tag number if the cache is set 
associative. 
 
3.3 Number of hits: 
 Number of hits of a block specifies the total 
number of times the block has been accessed from its 
most recent arrival into the cache. When a block is 
brought from main memory to cache, its corresponding 
NOH is set to the value 0000 0001. Whenever this 
block is accessed we left shift once (with 1 entering at 
the LSB) so that after 4 accesses the value of NOH 
becomes 0000 1111. NOH acts like a saturating 
counter in the sense that, once the value becomes 1111 
1111(8 accesses) any further accesses will leave NOH 
unchanged. 
 
3.4 Time since last access: 
 Time since last access denotes the number of 
cache accesses that have taken place to other blocks 
since this block was last accessed. Initially, when the 
block is brought from main memory to cache, the TLA 
field of this block is set to the value of all 1s, 
indicating that this is the most recently accessed block. 
Whenever an access to another block takes place we 
right shift once (with 0 entering at the MSB) so that 
0001 1111 denotes that the 3 most recent accesses did 
not access this block. TLA too acts like a saturating 
counter, i.e., once TLA reaches the value 0000 0000(8 
recent accesses did not access this block) even if the 
next access did not target this block, then too the value 
remains unchanged. 
 
3.5 Determining the functions: 
 In this poster we have presented one 
implementation for the calculation of γ given by the 
formula 
 
γ = (f1 (α)*1 f2 (hits)) *2 (g1 (α)*3 g2 (time)).  
 
A lower value of γ denotes that the corresponding 
block is more suitable to be replaced. We took into 
consideration 2 factors in determining the functions: 
 1) The minimality of hardware required to 
implement the functions. 
 2) The accurateness of γ in determining the 
block to be replaced. 
 

Based on the above we deduced the following 
functions: 
 
f1 (α) =   α
f2 (hits)   =   NOH (for e.g. if hits=4 then  
 f2 (hits) =0000 1111).This can actually  
 be  implemented in hardware using a         
 Left Shift Unit with 1s entering from the 
 right side.   
g1 (α) =   The one’s complement of α normalized to 
 the right.  (For e.g. if α =0000 0011 then     
 1s comp α =1111 1100 and normalized     
 value=0011 1111). This can be        
 implemented  in hardware using a Not     
 Unit and a Shift Unit. 
g2 (time) =  TLA (for e.g. if time=3 then  
 g2 (time) =0001 1111).This can also be I   
 implemented using a Right Shift Unit        
 with 0s entering from the left side. 
 
3.6 Determining the Operators: 
The operators *1, *2 and *3 were deduced as follows: 
*1, *3 = Bitwise And 
*2 = Taking bitwise 1’s complement of both the 
 operands from the LSB until the first 0 is 
 encountered for which a 1 is substituted. 
 Leave the other zeroes intact. After this the 
 Bitwise OR is performed for both operands. 
 
4 Example: 
 We consider 2 blocks and decide on which 
block to replace. 
 
Block1 has the following values . 
NOH = 0011 1111 (6 hits)       
TLA = 0000 0111(5 slots) 
 
Block2 has the following values.  
NOH = 0000 0011(2 hits)        
TLA = 0111 1111(1 slot) 
 
Slots here denote the number of cache references since 
this block was last accessed. Now let us consider 2 
values of α to determine which block to replace. 
Case1: α = 0001 1111 
Block1 
f1 (α) = 0001 1111  f2 (hits) = 0011 1111 
g1 (α) = 0000 0111  g2 (time) = 0000 0111 
 
Performing the operations as described above, we get 
the following result for γ.

f1 (α)*1 f2 (hits)    = 0001 1111 
 g1 (α)*3 g2 (time) = 0000 0111 
 



The intermediate step in *2 is shown: 
 0001 1111 is converted to 0010 0000 
 0000 0111 is converted to 0000 1000 
 
The final result is obtained by bitwise ORing the two 
values and we obtain 
 γ = 0010 1000 
 
Block2 
f1 (α) = 0001 1111  f2 (hits) = 0000 0011 
g1 (α) = 0000 0111  g2 (time) = 0111 1111 
 
Performing the operations as described above, we get 
the following result for γ.

f1 (α)*1 f2 (hits)    = 0000 0011 
 g1 (α)*3 g2 (time) = 0000 0111 
 
The intermediate step in *2 is shown: 
 0000 0011 is converted to 0000 0100 
 0000 0111 is converted to 0000 1000 
 
The final result is obtained by bitwise ORing the two 
values and we obtain 
 γ = 0000 1100 
 
Since the value of γ is lower for the 2nd block, it is 
selected for replacement. This was because, we 
assigned the value of α so that it gave priority to the 
number of hits rather than the time slots. This resulted 
in block1 to have a greater value of γ and thereby 
preventing itself from being replaced. 
 
Case2: α = 0000 0011 
Block1 
f1 (α) = 0000 0011  f2 (hits) = 0011 1111 
g1 (α) = 0011 1111  g2 (time) = 0000 0111 
 
Performing the operations as described above, we get 
the following result for γ.

f1 (α)*1 f2 (hits)    = 0000 0011 
 g1 (α)*3 g2 (time) = 0000 0111 
 
The intermediate step in *2 is shown: 
 0000 0011 is converted to 0000 0100 
 0000 0111 is converted to 0000 1000 
 
The final result is obtained by bitwise ORing the two 
values and we obtain 
 γ = 0000 1100 
 
Block2 
f1 (α) = 0000 0011  f2 (hits) = 0000 0011 
g1 (α) = 0011 1111  g2 (time) = 0111 1111 

 
Performing the operations as described above, we get 
the following result for γ.

f1 (α)*1 f2 (hits)    = 0000 0011 
 g1 (α)*3 g2 (time) = 0011 1111 
 
The intermediate step in *2 are shown: 
 0000 0011 is converted to 0000 0100 
 0011 1111 is converted to 0100 0000 
 
The final result is obtained by bitwise ORing the two 
values and we obtain 
 γ = 0100 0100 
 
Since the value of γ is lower for the 1st block, it is 
selected for replacement. This was because, we 
assigned the value of α so that it gave priority to the 
time since last accessed rather than the number of hits. 
This resulted in block2 to have a greater value of γ and 
thereby preventing itself from being replaced. 
 
5 Adaptive Algorithms: 
 The value of α determines which has a higher 
priority, the number of hits or the time since last 
access, in choosing a block for replacement. For a 
particular program, if the value of α that exists doesn’t 
work well (i.e. blocks in the cache still keep missing) 
then it means that the value of α has to shift so that it 
gives priority the other way around (i.e. if initially α
gives priority to number of hits and cache misses still 
occur then the value of α has to be shifted so that it 
now gives priority to the time elapsed). 
 
We propose 2 algorithms by which we can vary α so 
that the cache replacement policy can adapt to the 
program. 
 
5.1 Constant Hopping Algorithm: (Hop Step=1) 
 
1. Start from a value of α, say equal priority to both 
time and number of hits and note the number of 
misses/unit time (MT). (Note that MT is obtained after 
every ‘n’ time slots). 
 
2. Increase the value of α so that it moves towards 
giving the number of hits a higher priority. We also 
maintain a single bit called direction bit (DB) which 
states the direction of motion of α (1 indicates that α
was previously incremented, 0 indicates that α was 
previously decremented). 
 
3. Compare the new value of MT with the old value. If 
it is lesser, hop along the same direction. i.e. if DB=1, 



increment α and if DB=0, decrement α.(Incrementing 
α value is to move alpha towards giving the number of 
hits a higher priority and decrementing α value is to 
move α towards giving the time since last access 
higher priority). 
 
4. If the new value of MT is higher, then the direction 
in which α hopped previously was not efficient. 
Therefore, depending on the DB value, hop in the 
reverse direction. i.e. if DB=1, then decrement α and if 
DB=0, increment α. Reverse the value of DB (i.e. if 
DB were 1 it becomes 0 and if it were 0 it becomes 1). 
 
5. After n time slots calculate the value of MT and Go 
to step3. 
 
5.2 Variable Hopping Algorithm: (Hop Step is 
variable) 
 
1. Start from a value of α, say equal priority to both 
time and number of hits and note down the number of 
misses/unit time (MT). 
 
2. Increase the value of α so that it moves towards 
giving the number of hits a higher priority. We also 
maintain a single bit called direction bit (DB) which 
states the direction of motion of α (1 indicates that α
was previously incremented, 0 indicates that α was 
previously decremented). 
 
3. Compare the new value of MT with the old value. If 
it is lesser, hop along the same direction by 2 steps. i.e. 
if DB=1, increment α by 2 and if DB=0, decrement α
by 2. 
 
4. If the new value of MT is higher, then the direction 
in which α hopped previously was not efficient. 
Therefore, depending on the DB value, hop in the 
reverse direction by 1 step. i.e. if DB=1, then 
decrement α by 1and if DB=0, increment α by 1 .
Reverse the value of DB (i.e. if DB were 1 it becomes 
0 and if it were 0 it becomes 1). 
 
5. After n time slots calculate the value of MT and Go 
to step3. 
 

5.3 Example for Adaptive Hopping Algorithms: 
 

Table 1: Constant Hopping Algorithm 
DB = Direction Bit  MT= misses/unit time 
 
In Table 1, we start with an α value of 4 .Initially we 
increase α to 5. Since it shows increasing performance 
(since MT decreases from 20 to 18) α further hops 
along the same direction to 6. At this point MT 
increases from 18 to 22.So we decrease the value of 
α by one and reverse DB (i.e., make it 0).  
 

Table 2: Variable Hopping Algorithm 
DB = Direction Bit  MT= misses/unit time 
 
In Table 2, we start with a α value of 4. (The main 
difference from the previous algorithm is that we use 
variable hops for α - 1, 2 instead of a constant hop, 
namely 1).Initially we increase α to 5. Since it shows 
increase in performance we now increase α by a 
variable hop, namely 2, to 7.This results in decrease of 
performance and hence we invert DB and decrease α
by 1.The process repeats as shown. 
 
6 Future Work: 
 We can enhance the logic put forth by this 
poster by 2 means: 
 

During each computation, maintain a lower 
cutoff or threshold for the value of  γ using the 
previously obtained value for it. At the current 
computation if a block crosses this cutoff then that 
block can be selected for replacement without 
attempting to calculate the γ values of other blocks. 
This reduces computational time involved in selecting 
the block for replacement. Further a Buffer is 
maintained to store the present block contents. Even as 
data is given from this buffer we can simultaneously 

α 4 5 6 5 4 3 4 5 

DB 1 1 0 0 0 1 1 -- 

MT 20 18 22 21 20 23 21  

α 4 5 7 6 4 2 3 5 

DB 1 1 0 0 0 1 1 -- 

MT 20 19 23 22 20 24 23 -- 



determine which block has to be replaced. The idea 
here is that the program shouldn’t stall while we 
determine the block for replacement. 
 
7 Conclusion: 
 

In this poster we have proposed a technique to 
dynamically alter the replacement technique allowing 
it to range from the Least Recently Used replacement 
policy to the Least Frequently Used replacement policy 
depending on the program’s access behavior. We hope 
that this technique could provide a good combination 
of both the above policies in trying to exploit cache 
behavior, thereby reducing the number of overall 
misses that can occur. 
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