
OUT-OF-ORDER COMMIT LOGIC WITH PRECISE EXCEPTION
HANDLING FOR PIPELINED PROCESSORS

Balaji Vijayan, Manivel Rajendran and Senthilkumar Veluswami

{balaji, rmanivel, senthil}@cs.annauniv.edu
School of Computer Science and Engineering

College of Engineering
Anna University, Chennai

India-600 025

ABSTRACT

The major bottleneck in today’s pipelined
microprocessors has been data dependencies and
branch prediction. Existing approaches have
focused on issuing instructions out-of-order but
have limited themselves to committing in-order
considering the amount of overhead involved.
This paper proposes an architecture in which
instructions are allowed to commit out-of-order
thereby increasing the throughput. The problem of
precise exception handling in out-of-order commit
has also been handled without involving
significant hardware overhead. The design
proposed in this paper can also be extended in
future to incorporate branch prediction.

1. INTRODUCTION

As the demand for processing power increases,
computer system designers are forced to use
techniques that result in high-performance
processing units. A widely used technique is
pipelining [1], in which the overall logic of the
system is split into several stages with each stage
performing a sub-task of a complete task.
Considerable overlap can be achieved because
each stage can perform a sub-task for a different
task. Pipelined CPUs have two major
impediments to their performance: i) data
dependencies and ii) branch instructions. An
instruction cannot begin execution until its
operands are available. If an operand is the result
of a previous instruction, the instruction must wait
till the previous instruction has completed

execution, thereby decreasing throughput. The
performance degradation due to branch
instructions is even more severe. Not only must a
conditional branch instruction wait for its
condition to be known (resulting in "bubbles" in
the pipeline), an additional penalty is incurred in
fetching an instruction from the taken branch path
to the instruction decode and issue stage.

Also, a major problem that arises in
pipelined computer design is that an interrupt can
be imprecise [2, 3]. This problem is especially
severe in multiple functional unit computers in
which instructions can complete execution out of
program order [4]. For a high-performance,
pipelined CPU, an adequate solution must be
found for the imprecise interrupt problem and
means must be provided for overcoming the
performance-degrading factors.

In this paper, the issues of dependency-

resolution and preciseness of state are combined.
This paper proposes a design wherein instructions
commit out-of-order and, at the same time,
guarantees a precise state of the machine, without
a significant hardware overhead.

The paper is organized as follows. Section 2

discusses the previous work done in the area of
data dependencies. Section 3 explains the
proposed design. Section 4 describes the
simulation setup. Section 5 discusses the results of
simulation. Section 6 concludes the paper and
points out future directions of research.

2. PREVIOUS WORK

Previous work in the area of data dependencies
was based on Tomasulo Algorithm which
supported out-of-order execution of instructions.
The drawbacks of the Tomasulo Algorithm led to
significant work on simplifying the hardware and
on out-of-order issue of instructions.

2.1. Tomasulo’s Algorithm
The algorithm works as follows: An instruction,
whose operands are not available when it enters
decode and issue stage is forwarded to a
Reservation Station (RS) [5] associated with the
functional unit that it will be using. It waits in the
RS until its data dependencies have been resolved,
i.e., its operands are ready. An instruction waiting
at the RS resolves its dependencies by monitoring
the Common Data Bus (Result Bus). When all the
operands for an instruction are available, it is
dispatched to the functional unit for execution.
The result bus can be reserved either when the
instruction is dispatched to the functional unit [6]
or before it is about to leave the functional unit
[7].

Each source register is assigned a bit that
determines if the register is busy. A register is
busy if it is the destination of an instruction that is
still in execution. A destination register is also
called a sink register [7]. Each sink register is
assigned a tag which identifies the result that must
be written into the register. Each reservation
station has the following fields:

Figure 1: RS entry

If a source register is busy when the

instruction reaches the issue stage, the tag for the
source register is obtained and the instruction is
forwarded to a reservation station. If the sink
register is busy, the instruction fetches a new tag,
updates the tag of the sink register and proceeds to

a reservation station. The registers as well as the
reservation stations monitor the result bus and
update their contents when a matching tag is
found.

The RS allows instructions to finish

execution out of order but updates the state of the
machine (registers, memory, etc.), i.e., commits
the instructions in the order that the instructions
were present in the program, thereby assuring that
a precise state of the machine is recoverable at
any time.

2.2. Extension to Tomasulo’s Approach
All the reservation stations were combined into a
common RS Pool called Register Update Unit
(RUU) [7] rather than having disjointed pools of
reservation stations associated with each
functional unit. The RUU along with the Register
Status Unit (RSU) helps in implementing precise
interrupt handler. The RSU indicates whether the
register is a destination for an instruction in
execution and contains the corresponding tag for
the register. The RUU is implemented as a
circular queue of entries, each of which consists
of the details of instructions in the order in which
they were dispatched.

• The instructions are issued from the RUU to

the functional units if the operands are ready –
Out-of-order issue.

• As instructions finish execution they can leave

the RUU (i.e. commit) only if they are at the
top of the RUU. If they are not at the top they
have to wait until all instructions before it
commit i.e. though the result is available the
registers cannot be updated – In-order
completion.

The proposed design to commit instructions in

out-of-order with exception handling is discussed
in the next section.

3. PROPOSED DESIGN

For an instruction to commit out-of-order, the
corresponding RUU entry has to be removed and
the other entries should be shifted. This involves a
lot of hardware considering the amount of
information to be shifted each time. To overcome
this problem, a new unit called Order Unit (OU) is
used. When an instruction gets committed before
its preceding instructions, only the entries in OU
are shifted.

In case of an exception, the old values
should be recovered. A new unit called Register
Update Buffer (RUB) is used to handle
exceptions.

3.1. Register Update Unit (RUU)
Certain modifications are to be carried out in the
RUU described in the previous section to
implement this design. In order to recover from an
exception, the previous value should be known.
So a new field that contains the result tag is used.
It specifies the RUU entry that has the previous
value of the same destination register. Also, a
busy bit is used to identify whether the RUU entry
is available or busy.

Figure 2: RUU entry

As an instruction is dispatched, the register

status of the destination register is also checked. If
it is ‘busy’ then the tag is sent to the ‘Result Tag’
field of the RUU entry.

3.2. Order Unit (OU)
The OU contains an array of pointers to the
instructions in the RUU and maintains the
program order among the remaining instructions.
• When an instruction is dispatched, the

instruction details are sent to RUU and the tag
of the RUU entry is appended to the OU.

• When an instruction commits out-of-order, the
subsequent entries are shifted only in the OU.

Figure 3: OU entry

In Figure 3, ‘Tag’ ranges from 0 to (n-1) as

in the case of RUU. ‘RUU Tag’ is the tag of the
corresponding RUU entry. ‘RUB Vector’
corresponds to the entries in RUB that are
associated with the instruction. It consists of 1’s
and 0’s. A ‘1’ in nth position means that the nth
entry in RUB is associated with the instruction. It
is used to recover from an exception.

The shifting of entries in case of an out-of-

order commit in OU reduces the overhead
involved.

3.3. Register Update Buffer (RUB)
When an instruction commits, an entry is made in
the RUB so that in case of an exception, old
values can be recovered. While committing, the
old value and the register number are entered as a
new entry in the RUB and the corresponding bit
of the ‘RUB vector’ of the immediately preceding
instruction in the OU is set. The ‘RUB vector’ of
the immediately preceding instruction in OU is
updated by ORing it with the ‘RUB vector’ of the
committing instruction.

Figure 4: RUB entry

An instruction can commit out-of-order if
• there is a free entry in RUB or
• there is an entry for the same register in

RUB corresponding to the immediately
preceding instruction. In this case, the old
entry is squashed i.e. the value in RUB is
updated.

When the instruction pertaining to the first

entry in OU commits, the corresponding entries in
RUB are squashed, as there is no need to recover
these values on an exception.

3.4. Dependency Resolution

3.4.1. RAW
This hazard is handled as in Tomasulo’s
Algorithm.

3.4.2. WAW
In order to recover from exceptions, writes to
registers are done only in program order. So
writes to same register get committed only in
order and there is no WAW hazard.

3.4.3. WAR
To overcome this problem, the source operands
are read as soon as they are available. If an
instruction is waiting for an operand it monitors
the result bus and if there is a match the operand
value is read.

3.4.4. Memory Operations
The memory operations are issued in-order
because the addresses of consecutive loads/stores
may point to the same memory location resulting
in wrong execution. Also, the memory operations
are committed only in-order.

3.4.5. Branch instruction
Branch instructions are not predicted. The
instructions following the branch instruction are
not dispatched to the RUU, until the result of the
branch is known. When the target of a branch is
found, fetching is continued from the new
Program Counter (PC) location.

3.4.6. Exceptions
When an instruction causes an exception, the
registers may have a wrong value as the
instructions are committed out-of-order. To
recover the original values, the instructions in OU
are considered backwards till the instruction that
caused exception since recovery should be from
the most recent value. The corresponding RUB
entries contain the original values of those
registers that were updated by the succeeding
instructions that committed out of order.

After recovering the original values, all the
entries from the instruction that caused the
exception to the last entry in the OU are flushed.
The corresponding RUU entry, RUB entries and
functional units are also flushed. All the other
remaining instructions are committed and the
control is given to the exception handler.

The memory needs no recovery as writes to

memory are issued in-order and only when the
instruction is at the top of the OU. If memory
operations are committed out-of-order then
recovery will decrease throughput as memory
accesses require long latencies.

4. SIMULATION

The simulations were carried out using the
DLXView simulator [8]. The simulation programs
had dependencies involving all the three hazards.
All the three hazards were detected and resolved
resulting in higher throughput. Exceptions were
also handled properly, thus guaranteeing precise
state of the machine. The results are discussed in
the next section.

5. RESULTS AND DISCUSSIONS

In the existing model, the instructions wait in the
RUU even after they complete execution out of
order. Because of this, the issue of new
instructions gets stalled. But in the proposed
model, the entries in the RUU are squashed as
soon as the instructions complete execution.

This model performs better when the load
and store latencies are high or when there are high
latency instructions. In the existing model, the
instruction following load/store or any high
latency instruction cannot commit or execute until
these preceding instructions finish. But, in this
model, if instructions are not dependent on the
loads or high latency instruction, they can execute
and commit. As a result, throughput increases.

Also on decreasing the RUU size, this model
works better as it accommodates more
instructions in a given time.

6. CONCLUSION

Thus, the issue of dependency resolution for out-
of-order with exception handling has been
discussed in detail. A scheme was designed that
can resolve dependencies and thereby allow out-
of-order instruction execution and out-of-order
commit. This scheme also handles exceptions
without involving a significant hardware
overhead. This design can be extended to support
execution of instructions from a predicted branch
path. In case of a misprediction, the exception
handling mechanism can be used for recovery.

REFERENCES

1. P.M. Kogge, “The Architecture of Pipelined

Computers”, New York, McGraw-Hill, 1981.

2. D.W. Anderson, F. J. Sparacio, and R. M.

Tomasulo, "The IBM System/360 Model 91:
Machine Philosophy and Instruction-
Handling", IBM Journal of Research and
Development, pp. 8-24, January 1967.

3. J.E. Smith and A. R. Pleszkun,

"Implementation of Precise Interrupts in
Pipelined Processors", Proceedings of the
12th Annual Symposium on Computer
Architecture, pp. 36-44, June 1985.

4. R. M Russel, "The CRAY-1 Computer
System", CACM, vol. 21, pp. 63-72, January
1978.

5. Gurindar S. Sohi, Sriram Vajapeyam,
“Instruction Issue Logic for High-
Performance, Interruptable Pipelined
Processors”, ISCA 1987.

6. S. Weiss and J. E. Smith, "Instruction Issue
Logic for Pipelined Supercomputers",
Proceedings of the 11th Annual Symposium on
Computer Architecture, pp. 110-118, June
1984.

7. R. M. Tomasulo, "An Efficient Algorithm for

Exploiting Multiple Arithmetic Units", IBM
Journal of Research and Development, pp. 25-
33, January 1967.

8. Larry B. Hostetler and Brian Mirtich,
“DLXSim – A Simulator for DLX”, Technical
Report, January 1998.

