
OUT-OF-ORDER COMMIT LOGIC WITH PRECISE EXCEPTION 
HANDLING FOR PIPELINED PROCESSORS 

 
Balaji Vijayan, Manivel Rajendran and Senthilkumar Veluswami  

{balaji, rmanivel, senthil}@cs.annauniv.edu 
School of Computer Science and Engineering 

College of Engineering 
Anna University, Chennai 

India-600 025 
 

ABSTRACT 
 

The major bottleneck in today’s pipelined 
microprocessors has been data dependencies and 
branch prediction. Existing approaches have 
focused on issuing instructions out-of-order but 
have limited themselves to committing in-order 
considering the amount of overhead involved. 
This paper proposes an architecture in which 
instructions are allowed to commit out-of-order 
thereby increasing the throughput. The problem of 
precise exception handling in out-of-order commit 
has also been handled without involving 
significant hardware overhead. The design 
proposed in this paper can also be extended in 
future to incorporate branch prediction. 

 
 

1. INTRODUCTION 
 

As the demand for processing power increases, 
computer system designers are forced to use 
techniques that result in high-performance 
processing units. A widely used technique is 
pipelining [1], in which the overall logic of the 
system is split into several stages with each stage 
performing a sub-task of a complete task. 
Considerable overlap can be achieved because 
each stage can perform a sub-task for a different 
task. Pipelined CPUs have two major 
impediments to their performance: i) data 
dependencies and ii) branch instructions. An 
instruction cannot begin execution until its 
operands are available. If an operand is the result 
of a previous instruction, the instruction must wait 
till the previous instruction has completed 

execution, thereby decreasing throughput. The 
performance degradation due to branch 
instructions is even more severe. Not only must a 
conditional branch instruction wait for its 
condition to be known (resulting in "bubbles" in 
the pipeline), an additional penalty is incurred in 
fetching an instruction from the taken branch path 
to the instruction decode and issue stage. 
 

Also, a major problem that arises in 
pipelined computer design is that an interrupt can 
be imprecise [2, 3]. This problem is especially 
severe in multiple functional unit computers in 
which instructions can complete execution out of 
program order [4]. For a high-performance, 
pipelined CPU, an adequate solution must be 
found for the imprecise interrupt problem and 
means must be provided for overcoming the 
performance-degrading factors. 

 
In this paper, the issues of dependency-

resolution and preciseness of state are combined.  
This paper proposes a design wherein instructions 
commit out-of-order and, at the same time, 
guarantees a precise state of the machine, without 
a significant hardware overhead. 

 
The paper is organized as follows. Section 2 

discusses the previous work done in the area of 
data dependencies. Section 3 explains the 
proposed design. Section 4 describes the 
simulation setup. Section 5 discusses the results of 
simulation. Section 6 concludes the paper and 
points out future directions of research. 

 
 



2. PREVIOUS WORK 
 
Previous work in the area of data dependencies 
was based on Tomasulo Algorithm which 
supported out-of-order execution of instructions. 
The drawbacks of the Tomasulo Algorithm led to 
significant work on simplifying the hardware and 
on out-of-order issue of instructions. 
 
2.1. Tomasulo’s Algorithm 
The algorithm works as follows: An instruction, 
whose operands are not available when it enters 
decode and issue stage is forwarded to a 
Reservation Station (RS) [5] associated with the 
functional unit that it will be using. It waits in the 
RS until its data dependencies have been resolved, 
i.e., its operands are ready. An instruction waiting 
at the RS resolves its dependencies by monitoring 
the Common Data Bus (Result Bus). When all the 
operands for an instruction are available, it is 
dispatched to the functional unit for execution. 
The result bus can be reserved either when the 
instruction is dispatched to the functional unit [6] 
or before it is about to leave the functional unit 
[7]. 
 

Each source register is assigned a bit that 
determines if the register is busy. A register is 
busy if it is the destination of an instruction that is 
still in execution. A destination register is also 
called a sink register [7]. Each sink register is 
assigned a tag which identifies the result that must 
be written into the register. Each reservation 
station has the following fields: 

 

 
Figure 1: RS entry 

 
If a source register is busy when the 

instruction reaches the issue stage, the tag for the 
source register is obtained and the instruction is 
forwarded to a reservation station. If the sink 
register is busy, the instruction fetches a new tag, 
updates the tag of the sink register and proceeds to 

a reservation station. The registers as well as the 
reservation stations monitor the result bus and 
update their contents when a matching tag is 
found.  

 
The RS allows instructions to finish 

execution out of order but updates the state of the 
machine (registers, memory, etc.), i.e., commits 
the instructions in the order that the instructions 
were present in the program, thereby assuring that 
a precise state of the machine is recoverable at 
any time.  

 
2.2. Extension to Tomasulo’s Approach 
All the reservation stations were combined into a 
common RS Pool called Register Update Unit 
(RUU) [7] rather than having disjointed pools of 
reservation stations associated with each 
functional unit. The RUU along with the Register 
Status Unit (RSU) helps in implementing precise 
interrupt handler. The RSU indicates whether the 
register is a destination for an instruction in 
execution and contains the corresponding tag for 
the register. The RUU is implemented as a 
circular queue of entries, each of which consists 
of the details of instructions in the order in which 
they were dispatched.  
 
• The instructions are issued from the RUU to 

the functional units if the operands are ready – 
Out-of-order issue. 

 
• As instructions finish execution they can leave 

the RUU (i.e. commit) only if they are at the 
top of the RUU. If they are not at the top they 
have to wait until all instructions before it 
commit i.e. though the result is available the 
registers cannot be updated – In-order 
completion. 
 
The proposed design to commit instructions in 

out-of-order with exception handling is discussed 
in the next section. 

 
 
 



3. PROPOSED DESIGN 
 

For an instruction to commit out-of-order, the 
corresponding RUU entry has to be removed and 
the other entries should be shifted. This involves a 
lot of hardware considering the amount of 
information to be shifted each time. To overcome 
this problem, a new unit called Order Unit (OU) is 
used. When an instruction gets committed before 
its preceding instructions, only the entries in OU 
are shifted.  
 

In case of an exception, the old values 
should be recovered. A new unit called Register 
Update Buffer (RUB) is used to handle 
exceptions.  

 
3.1. Register Update Unit (RUU) 
Certain modifications are to be carried out in the 
RUU described in the previous section to 
implement this design. In order to recover from an 
exception, the previous value should be known. 
So a new field that contains the result tag is used. 
It specifies the RUU entry that has the previous 
value of the same destination register. Also, a 
busy bit is used to identify whether the RUU entry 
is available or busy. 
 

 
Figure 2: RUU entry 

 
As an instruction is dispatched, the register 

status of the destination register is also checked. If 
it is ‘busy’ then the tag is sent to the ‘Result Tag’ 
field of the RUU entry. 

 
3.2. Order Unit (OU) 
The OU contains an array of pointers to the 
instructions in the RUU and maintains the 
program order among the remaining instructions. 
• When an instruction is dispatched, the 

instruction details are sent to RUU and the tag 
of the RUU entry is appended to the OU.  

• When an instruction commits out-of-order, the 
subsequent entries are shifted only in the OU.  

 
Figure 3: OU entry 

 
In Figure 3, ‘Tag’ ranges from 0 to (n-1) as 

in the case of RUU. ‘RUU Tag’ is the tag of the 
corresponding RUU entry. ‘RUB Vector’ 
corresponds to the entries in RUB that are 
associated with the instruction. It consists of 1’s 
and 0’s. A ‘1’ in nth position means that the nth 
entry in RUB is associated with the instruction. It 
is used to recover from an exception. 

 
The shifting of entries in case of an out-of-

order commit in OU reduces the overhead 
involved. 

  
3.3. Register Update Buffer (RUB) 
When an instruction commits, an entry is made in 
the RUB so that in case of an exception, old 
values can be recovered. While committing, the 
old value and the register number are entered as a 
new entry in the RUB and the corresponding bit 
of the ‘RUB vector’ of the immediately preceding 
instruction in the OU is set. The ‘RUB vector’ of 
the immediately preceding instruction in OU is 
updated by ORing it with the ‘RUB vector’ of the 
committing instruction.  
 

 
Figure 4: RUB entry 

 
An instruction can commit out-of-order if  
• there is a free entry in RUB or 
• there is an entry for the same register in 

RUB corresponding to the immediately 
preceding instruction. In this case, the old 
entry is squashed i.e. the value in RUB is 
updated. 

 
When the instruction pertaining to the first 

entry in OU commits, the corresponding entries in 
RUB are squashed, as there is no need to recover 
these values on an exception. 

 



3.4. Dependency Resolution 
 
3.4.1. RAW 
This hazard is handled as in Tomasulo’s 
Algorithm. 

  
3.4.2. WAW 
In order to recover from exceptions, writes to 
registers are done only in program order. So 
writes to same register get committed only in 
order and there is no WAW hazard. 

 
3.4.3. WAR 
To overcome this problem, the source operands 
are read as soon as they are available. If an 
instruction is waiting for an operand it monitors 
the result bus and if there is a match the operand 
value is read.  

 
3.4.4. Memory Operations 
The memory operations are issued in-order 
because the addresses of consecutive loads/stores 
may point to the same memory location resulting 
in wrong execution. Also, the memory operations 
are committed only in-order. 

 
3.4.5. Branch instruction 
Branch instructions are not predicted. The 
instructions following the branch instruction are 
not dispatched to the RUU, until the result of the 
branch is known. When the target of a branch is 
found, fetching is continued from the new 
Program Counter (PC) location. 

 
3.4.6. Exceptions 
When an instruction causes an exception, the 
registers may have a wrong value as the 
instructions are committed out-of-order. To 
recover the original values, the instructions in OU 
are considered backwards till the instruction that 
caused exception since recovery should be from 
the most recent value. The corresponding RUB 
entries contain the original values of those 
registers that were updated by the succeeding 
instructions that committed out of order.  

 

After recovering the original values, all the 
entries from the instruction that caused the 
exception to the last entry in the OU are flushed. 
The corresponding RUU entry, RUB entries and 
functional units are also flushed. All the other 
remaining instructions are committed and the 
control is given to the exception handler. 

 
The memory needs no recovery as writes to 

memory are issued in-order and only when the 
instruction is at the top of the OU. If memory 
operations are committed out-of-order then 
recovery will decrease throughput as memory 
accesses require long latencies. 

 
 

4. SIMULATION 
 
The simulations were carried out using the 
DLXView simulator [8]. The simulation programs 
had dependencies involving all the three hazards. 
All the three hazards were detected and resolved 
resulting in higher throughput. Exceptions were 
also handled properly, thus guaranteeing precise 
state of the machine. The results are discussed in 
the next section. 
 
 

5. RESULTS AND DISCUSSIONS 
 
In the existing model, the instructions wait in the 
RUU even after they complete execution out of 
order. Because of this, the issue of new 
instructions gets stalled. But in the proposed 
model, the entries in the RUU are squashed as 
soon as the instructions complete execution. 
 

This model performs better when the load 
and store latencies are high or when there are high 
latency instructions. In the existing model, the 
instruction following load/store or any high 
latency instruction cannot commit or execute until 
these preceding instructions finish. But, in this 
model, if instructions are not dependent on the 
loads or high latency instruction, they can execute 
and commit. As a result, throughput increases. 



Also on decreasing the RUU size, this model 
works better as it accommodates more 
instructions in a given time.  

 
 

6. CONCLUSION 
 
Thus, the issue of dependency resolution for out-
of-order with exception handling has been 
discussed in detail. A scheme was designed that 
can resolve dependencies and thereby allow out-
of-order instruction execution and out-of-order 
commit. This scheme also handles exceptions 
without involving a significant hardware 
overhead. This design can be extended to support 
execution of instructions from a predicted branch 
path. In case of a misprediction, the exception 
handling mechanism can be used for recovery. 
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