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1 Introduction

The Grid is a new paradigm for wide area distributed com-
puting. Management of grid resource information on the grid
is complicated by the fact that grid resources such as hosts,
clusters, virtual organizations, people, mathematical libraries,
software packages, and services have aspects of their descrip-
tion that change at millisecond rates. This defining char-
acteristic makes traditional directory service solutions inap-
propriate. Our work contributes to the understanding of re-
source information representation and retrieval in grid com-
puting through the development of a grid-specific synthetic
database benchmark/workload for a grid resource information
repository, and the application of the benchmark/workload to
three platforms. The benchmark/workload is a set of queries
and ’scenarios’ developed from a platform-neutral data model
of grid resources.

The contribution of our work is threefold: the first is a syn-
thetic database benchmark/workload. The queries are mean-
ingful in a grid context, assume an underlying data model
made up of realistic grid resources, and populated with re-
alistic data. The second is the application of the database
benchmark on three vastly heterogeneous “database” plat-
forms: mySQL 4.0, a relational database, that uses the SQL
query language; Xindice 1.1, a native XML database that uses
XPath as its query language; and MDS2, an LDAP database
that uses LDAP as its query language. The final contribution
is a metric that captures both tangible and less tangible aspects
of information retrieval.

2 Resource Information Data Model

The data model used in our work is based on the GGF
proposed GLUE schema v8 as of October 2002 [2]. The
GLUE schema defines entities representing clusters, subclus-
ters, hosts, processors, jobs, and computing Elements to name
a few (see Figure 1.) Through the process of talking to man-
agers of production high performance computing systems, we
decided to extend the GLUE schema with entities representing
people, user accounts, and communication channels between
machines. Since taking the snapshot of the GLUE schema,

some of our extensions have become part of the GLUE data
model.

ComputingElement

-Name : char

-UniqueId [key] : char

-GRAMVersion : char

-HostName : char

-GatekeeperPort : char

-TotalCPUs : int

-RunningJobs : int

-TotalJobs : int

-WaitingJobs : int

-WorstResponseTime : double

-EstimatedResponseTime : double

-Status : enum

-FreeCPUs : int

Policy

-MaxWallClockTime : int

-MaxCPUTime : int

-MaxTotalJObs : int

-Priority : int

-PolicyType [key] : char

GlueSE

-GlueSEUniqueId [key] : char

-GlueSEName : char

-GlueSEPort : int

-GlueSEHostingSL : char

AppSource

-Location [key] : char

-Pathname [key] : char

-Filename[key] : char

-Fileformate : char

Job

-GlobalId [key] : char

-LocalId : char

-GlobalOwner : char

-LocalOwner : char

-Status : enum

Cluster

-ClusterName : char

-ClusterId [key] : char

ClusterMembership

-ClusterId [key] : char

-UserId [key] : int

Users

-UserId [key] : char

-Name : char

-Email : char

-OrganizationalUnit : char

UserAccounts

-UserId [key] : char

-CertificateId [Uni] : int

-Certificateauthority : char

-ActivationDate : Date

-ExpirationDate : Date

-PublicKey : blob

SubCluster

-SubClusterName : char

SubClusterId : char

Host

-Hostname : char

-HostId [key] : char

-SMPLoad1Min : double

-SMPLoad5Min : double

-SMPLoad15Min : double

-ProcLoad1Min : double

-ProcLoad5Min : double

-ProcLoad15Min : double

Endpoint

-HostId : char

-Port [key] : int

-Protocol [key] : char

-Addr [key] : char

Connection

-Num_Hops : int

-Latency_RoundtripDelay_Ping : double

-Bandwidth_Avail_TCP_SingleStream : double

-Packetloss : int

-Traceroute : blob

-Endpoint1_Port : int

Endpoint1_Protocol : char

-Endpoint1_Addr : char

-EndPoint2_Port : int

-Endpoint2_Protocol : char

-Endpoint2_Addr : char

-ConnectionId [key] : int

Benchmark

-S100 : float

-SF00 : float

-BenchmarkId [key] : int

MainMemory

-SubClusterId [key] : char

-RAMSize : int

-RAMAvailable : int

-VirtualMemorySize : int

-VirtualMemoryAvailable : int

StorageDevice

-SubClusterId [key] : char

-Name : char

-Type : char

-TransferRate : int

-Size : int

-AvailableSpace : int

Application

-Proctype : int

-Arch : char

-OS : char

-Minosv : int

-Version : char

-Owner : char

-Status : enum

-Pid [key] : int

-Source_location : char

-Source_filename : char

-Source_pathname : char

-RunTimeEnvironment : char

Processor

-Vendor : char

-Model : char

-Version : char

-ClockSpeed : char

-InstructionSet : char

-OtherProcessingDescription : char

-CacheL1 : int

-CacheL1I : int

-CacheL1D : int

-CacheL2 : int

-ProcessorId [key] : char

OperatingSystem

-Name : char

-Release : char

-Version : char

-OSId [key] : char

NetworkAdapter

-Name : char

-IPAddress [key] : char

-MaxTransmissionUnit : char

-OutBoundIP : enum

-InBoundIP : enum

Architecture

-PlatformType : char

-SMPSize : int

--ArchitectureId [key] : int
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Figure 1: UML data model used by benchmark/workload.

The key to understanding the diagram in Figure 1 is to focus
on the ComputingElement, Cluster, SubCluster, and Host hi-
erarchy that runs vertically down the figure as it is shown in
the circle. A ComputingElement, which can be thought of in-
tuitively as a queue in a batch scheduling system, serves one
or more Clusters, while a Cluster has one or more Computin-
gElements. A SubCluster belongs to one or more Clusters, and
to zero or more SubClusters. A Host belongs to one or more
SubClusters.

The databases are populated with pseudo synthetic val-
ues informed from several large MDS dumps dated between
November 2000 and January 2002 that we obtained. Each
of the three database platforms hold the same entities and
relationships. The number of instances of entities and rela-
tionships is also held constant across the three platforms. A
database platform contains 34 entities/relationships and 81684
instances. In following with the standard adopted by the
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GLUE schema, a relation between two entities is represented
as a separate collection. The distribution of instances among
the entities shown in Figure 1 are given in Table 1 for a sam-
pling of the entities.

Collection Number of Objects

Cluster 20
UserAccounts 60
ComputingElement 110
Subcluster 340
Application 600
Connection 12000
Host 29520

Table 1: Object distribution for the major collections.

3 Grid Resource Benchmark/ Work-
load

The kinds of queries and updates issued against a grid re-
source repository can vary widely, limited only by the user’s
knowledge of the query language, the expressiveness of the
query language, and limitations of the underlying implemen-
tation. Our goal is to provide a synthetic database workload
that is both broad and representative of actual workloads so as
to accurately assess the strengths and weaknesses of different
grid resource information repositories. The synthetic database
workload that we developed consists of 16 queries and updates
and four scenarios. The queries/updates are grouped into five
major categories: scoping, index, join, selectivity, and base
operations; the grouping is for purposes of ease of understand-
ing. Over half the queries are paired for purposes of testing the
presence or absence of a feature (e.g., an index). Features not
undergoing testing are controlled across the pairs. The follow-
ing are those query groups.

Scoping. A scope defines a starting point for a search. It is
relevant in schemes having a nested or hierarchical organiza-
tion. By stating the starting scope of a query, (i.e., starting
point in a tree), one can restrict query evaluation to a partic-
ular subtree. As this often results in increased efficiency in
hierarchically organized data, scoped queries should perform
well in hierarchal databases (i.e., MDS2, Xindice.)

The ’scoping’ queries consist of two pairs of queries (four
queries in total.) The first pair tests over a smaller object col-
lection and the scope is set at one level above the desired ob-
jects. Specifically, the scoped query asks for all subclusters
for a given cluster whereas the non-scoped query asks for the
subclusters directly. The subcluster table is of moderate size,
that is, 340 objects.

The second scoping query spans three levels of the
ComputingElement-Cluster-SubCluster-Host hierarchy to re-
trieve information from the much larger Host table (approxi-

mately 30000 objects). The Host table describes all hosts, or
individual computers, served by the grid resource information
repository.

Indexing. Query response times are often dramatically im-
proved when indexes are used. Indexes provide fast access for
queries that request indexed attributes. Our query set includes
one index pair, that is a pair of queries wherein the indepen-
dent variable is whether or not the requested value is indexed.

Selectivity. The selectivity of a query is the number of ob-
jects returned. According to DeWitt [1], coverage of the per-
formance domain can be achieved with queries that return 1
tuple, 1% of tuples, and 10% of tuples. These queries execute
over the Connection table which contains information about
12000 active network connections.

Joins Joins occur when a user requests information that re-
sides in more than one table. Joins can occur either across
tables, or as multiple joins over a single table. The latter is
called a self-join and occurs when a user asks for more than
one instance of a particular resource. For instance, a user is
seeking a subcluster wherein the needed software environment
exists, the job owner has an account, and the binary is resident.
The purpose of this query is not to test a different aspect of a
system, but to ask a realistic, grid related question; one that
might be posed by a scientist desiring to find a specific set of
nodes on which her binary can and is allowed to execute.

Other Operations. The two final queries in the benchmark
are connection request and update request. Connection request
is a request to the database that consists only of a connection
request followed immediately by a disconnection request. Up-
date updates a single attribute in a set of objects that match a
particular condition.

Scenarios. A scenario is a scripted synthetic workload is-
sued over a controlled time duration consisting of concurrent
query and update requests. Scenarios are a key part of the
benchmark as they expose the sensitivity of query response
time to increasing update rates. Scenarios will be described in
detail in Section 4.

4 Performance Evaluation

In the performance evaluation we undertook the application
of our synthetic query benchmark/workload to three database
platforms: mySQL 4.0, Xindice 1.1, and MDS 2 (GT 2.2.)
MySQL is configured with the InnoDB back end. InnoDB
tables support foreign keys, provide ACID properties, row-
level locking, and non-locking read in SELECTS for increased
concurrency and performance. Xindice 1.1 is an XML open
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source database. Unlike Xindice 1.0, which was a standalone
server, 1.1 is bootstrapped from an Apache Tomcat server.
MDS2 is configured as a single GRIS talking to a single GIIS
with GRIS and GIIS co-located on the same dual processor
server. All queries are issued against the GIIS.

The underlying hardware for all three databases is a dual
processor Dell Poweredge 6400 Xeon server, 2GB RAM, 100
GB Raid 5, RedHat 7.3. The client platform is a Sun Blade
1000, SunOS 5.8; access is through switched Fast Ethernet.
Each database is implemented as a standalone server and the
client scripts are standalone clients on a separate machine.

Consistency across the databases is ensured so that a query
issued against a relational database that returns 1000 tuples
will also return 1000 documents when issued against the
Xindice database. To ensure this consistency, the databases are
populated in a chained fashion starting from a single Perl script
used to create tables and indices in mySQL then to populate
the tables. Both Xindice and MDS2 are populated with data
from mySQL database. To populate Xindice, a script reads
data from a dump of the mySQL database and inserts data into
Xindice collections. As for MDS2, a PHP script reads data di-
rectly from mySQL database and puts those data into a LDIF
file which is the format recognized by LDAP. Then a simple
provider external to MDS reads the LDIF file and pipes the file
to the stdout pipe on which the GRIS is waiting. This chaining
has proved to be extremely useful when the databases needed
upgrading or when a consistent state needs to be restored.

4.1 Query Response Time

Query response time is a measure of the amount of time it
takes for a server to complete a query request and return the
result set. For the queries in the benchmark (not scenarios),
since query scripts are nonthreaded and blocking, a script exe-
cutes one query at at time. The query response times, captured
in Figures 2 through 6, show results organized by the query
groups described in Section 3. Listed across the X-axis of
each are the individual queries and their results for the three
different platforms. If a query is part of a binary pair, its pair
resides to its right and is prefaced with ’non’. The Y-axis plots
query response time in milliseconds. It is important to note
that the Y-axis scale is logarithmic.

We are surprised by the scoping results shown in Figure 2.
Scoping should favor hierarchical databases because scope
limits the search space. This is not the case with Xindice for
nonScopedHosts. What appears to be overshadowing the ben-
efits of scope is the number of XPath queries that must be is-
sued to the database in order to implement one higher level
query. From results reported in [4], we observed a linear cor-
relation between the number of XPath queries that must be
issued per query and the query response time.

The indexed results of Figure 3 show a clear benefit of using
index support in mySQL and Xindice. MDS2 does not use the
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Figure 2: Scoped: scoping limits a search to a particular subtree.
Hierarchical databases should show good results for scoped queries
(but not non-scoped.)

native index support of openLDAP [3] but instead employs a
cache in the GIIS and serves requests from cache. Hence there
is no difference between the indexed and non-indexed queries
for MDS. Due to difficulties in getting data to stay in the GIIS
caches, the MDS numbers shown are all satisfied out of cache.
Our solution is to give the cached data objects extended times
to live; this was required in order to get the queries to not fail
as objects disappeared.
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Figure 3: Indexed: indexed is a query over an indexed attribute;
nonIndexed queries over a non-indexed attributes. Data repositories
that employ indexes, mySQL and Xindice in this case, should per-
form significantly better for an indexed query than a nonindexed one.
MDS uses a cache instead of indexes.

Selectivity is defined as the number of objects that satisfy
a query. From the measurements shown in Figure 4, we can
conclude that query response time is not sensitive to number
of objects returned for both mySQL and Xindice.

The join queries shown in Figure 5 measure a repository’s
ability to assemble a result from numerous collections. The
results of the two queries are roughly the same, which is rea-
sonable since both queries touch the same number of collec-
tions.

An interesting observation can be made by comparing the
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join results in Figure 5 with the selectivity results of Figure
4. The join queries take on the order of 2.5 ms for mySQL
whereas selectivity1, on the other hand, completes in 53.24
ms. Similarly for Xindice, joins finish in approximately 1000
ms whereas selectivity1 completes in 38,572.33 ms. The rea-
son is that though the joins are over six collections, the col-
lections are small, on the order of hundreds of objects. The
collection over which the selectivity queries are executed con-
tains 12,200 objects. The results indicate that collection size
impacts performance more than does number of joins.
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Figure 4: Selectivity: selectivity is number of objects returned from
a query. Selectivity 1 returns one query from a collection of 12,200
objects; selectivity 1% returns 1%; selectivity 10% returns 10%. The
three queries together give an indication of the sensitivity of query
response time to number of objects returned.
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Figure 5: Joins: manyRelations touches six different collections in
evaluating the query. JobSubmit also touches six collections in asking
a realistic job-related question.

The update times shown in Figure 6 are for simple, one-
attribute updates. Thus they show an upper bound on the rate
at which a database can accept updates. For mySQL this rate
is 41 updates per second whereas for Xindice the rate is 0.2
updates per second. The low update rate for Xindice is an
overriding factor in the conclusion we draw that Xindice is
generally inappropriate as a platform for a grid resource repos-
itory. It also explains the odd behavior shown in the scenarios
discussed next.

update

connect

0

10

100

1000

Query Name

Update/Connect Query Results

A
vg

. R
es

po
ns

e 
T

im
e 

(m
s)

MySQL
Xindice
MDS2

Figure 6: Other: Update modifies a single attribute in a subset of a
collection. In MDS2 updates through the query interface are disabled
so this query is not able to capture update time. connect connects to
the database, disconnects and returns.

Scenarios. The scenarios are scripted synthetic workloads
designed to capture the sensitivity of query response time to
update load. The scenario, as depicted in Figures 7 begins
with the execution of three concurrent query streams. This
is Phase I. Phase II starts three minutes into the run when
update threads start up. In the case of mySQL, ten to fifty
update threads are started. In the case of Xindice, given its
exhibited poor update rate, only three update threads are run.
In Phase III, the update threads are terminated and the query
threads allowed to run through until the end of the run. As
mentioned in the caption of Figure 6, MDS2 does not support
updates through the traditional client query interface. As such,
we forced updates for purposes of the scenarios by issuing a
client query that queried a single attribute that has a short time
to live. In that way, every time the query is executed, it forces
the value to be updated through the provider mechanism (i.e.,
LDIF file piped to stdout) described in paragraph three of Sec-
tion 4.

In the Scenario shown in Figure 7, the impact of update
streams is observable in all three cases. MySQL average query
response times are 2-10 millisecond range when no update
threads are running, and increase to 10-100 milliseconds un-
der the update load. Xindice varies between 1000-2000 mil-
liseconds when no update threads are running and 2000-4000
milliseconds when they are. MDS2 results fall between that of
mySQL and Xindice, but the reader is asked to note that the
MDS scenario is run on a database that is significantly smaller
(95% smaller) than the database size used for the other plat-
forms. We expect response times to be slower by an order
of magnitude or more when applied to a full sized database.
The failure of the MDS2 curve to taper down at the end of the
scenario could be due to a lingering effect of rapid cache re-
fresh being triggered for the particular attribute after the query
request has terminated.
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Figure 7: Scenario: Average query response time of three simple
queries on small collections, with no overlap in access. MDS2 re-
sponse times are obtained on a database that is significantly smaller
(5%) than the others. Scenarios show sensitivity of query response
time to rapid updates.

4.2 Ease of Use

The ease of use metric attempts to capture the less tangible
aspects of performance of a grid information service, in par-
ticular, the amount of work a client must undertake in order to
obtain desired information. That is, the number of queries that
a user must issue, and the amount of processing required on
the returned data that falls upon the user. Though more diffi-
cult to quantify, ease of use is an important metric not only for
assessing the friendliness of a grid resource information repos-
itory, but for obtaining early understanding of the workload a
service might encounter when under intense load in produc-
tion use. For instance, if one service can respond with the
exact data set in one request, and a second server requires an
exchange of six request/response sequences before the exact
data set is received at the client, the former will scale better
under increased workloads.

The metrics used to quantify ease of use are number of bytes
returned and number of queries needed in order to retrieve the
requested data. These numbers, shown in Tables 2 and 3, are
not independent. Database platforms requiring more queries
to obtain data correspondingly return a larger number of bytes.
The problem could lie in limitations in the database platform
or in the query language that the platform supports. For in-
stance, a hierarchy of collections in Xindice must be searched
one collection at a time; that is, by issuing one XPath query
per level. If the client were interested in all subclusters be-
longing to the cluster “titan”, it would have to issue a query to
search the ClusterSubcluster relationship to retrieve all docu-
ments for which “titan” is a parent cluster. The client would
then for each document process it to extract the subcluster ID
and issue a second query to retrieve the processor ID from the
Processor table.

The problem is exaggerated somewhat by the finer granu-

larity decomposition of attributes in the GLUE schema. For
instance, Processor, Operating System, and MainMemory are
separate objects. This finer granularity has the advantage of
reducing the size of a database by eliminating redundancies,
but for hierarchical languages like XPath and LDAP, it comes
at a cost of additional queries.

Description mySQL 4.0 Xindice 1.1 MDS2
(KB) (KB) (KB)

scoping 0.4 - 46.0 7.5 - 549.5 5.6 - 47.3
indexing 9.5 - 11.0 139.8 - 140.9 9.6 - 24.0
selectivity 0.04 - 52.9 0.48 - 691.0 0.03 - 267.0
joins 0.03 - 0.03 40.1 - 131.8 0.98 - 1.9

Table 2: Minimum and maximum number of bytes returned per
query group. The MDS numbers are estimated from smaller database
sizes so are shown in italics.

Description mySQL 4.0 Xindice 1.1 MDS2

scoping 1 3 3
indexing 1 2 1
selectivity 1 1 1
joins 1 6 5

Table 3: Maximum number of queries issued to database per higher-
level query.

5 Conclusions and Future Work

We are in the process of making the benchmark accessible via
a portal so that others can utilize the results. This future work
can be of broader practical benefit to the Grid community by
tailoring the benchmark to a common subset of the schema
that is supported by multiple sites. Then it would be possible
to use the benchmark for exploratory queries to a grid infor-
mation server to assess its current load.
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