
Towards Economic Trace Caches: A Profile Based Approach

Saisuresh Krishnakumaran, Sai Arunachalam
{saisuresh, sai}@cs.annauniv.edu

Department of Computer Science and Engineering,
College of Engineering, Anna University,

 Chennai, India.

Abstract

Trace caches have been effectively used as a solution
to the problem of fetch mechanism bottlenecks in
recent processors. Higher performance is gleaned by
increasing the sizes of the trace caches, which brings
along higher power consumption. However, in the
wake of power economy, alternatives that better suit
our needs have to be investigated. Towards this end,
we propose a scheme that promises a higher
performance with lesser overheads and the
conventional trace cache size.

Our scheme lays out a profile-based
approach to increase the efficiency of the trace
cache. The application program is profiled on its first
run and the resulting profile in used thenceforth for
future runs, provided the run time environment does
not change. The program is partitioned and the
profiles seek to differentiate between the most
important and the not so important traces in each of
the subset. This information is judiciously used to
achieve enhanced performance of the trace cache.

1 Introduction

With the superior capabilities of the present
day super-scalar processors, a large number of
instructions can be executed in a single cycle.
However, instruction fetch mechanisms have to keep
up with such processors if instruction level
parallelism has to be exploited to the maximum.
Branch prediction accuracy, instruction hit rate in the
cache and dynamic execution sequences are among
the factors that affect the fetch mechanism efficiency.

Trace caches [1] have been proposed as an
effective solution to address the limitations of the
fetch mechanism. These caches store the instruction
basic blocks in the dynamic order in which they are
retrieved during program execution. Each trace line
stores a sequence of blocks, along with some

contextual information such as the starting address of
each block and the prediction bits for the trace in
question. A multiple branch predictor [2] is used to
predict the next ‘n’ branch outcomes during each
fetch. The address of the starting block and the
prediction bits are used to determine the presence of
the required trace in the trace cache. If the trace is
present, it is retrieved from the trace cache in a single
cycle, else we resort to fetching instructions from the
instruction cache.

While trace caches have helped in achieving
better performance over conventional designs, there
are some inherent limitations towards their use. Some
of the issues are as follows:

• It has been witnessed that performance
benefits can be reaped by use of larger trace
caches [3], but this is discouraged by the
corresponding increase in power
consumption.

• Traces consisting entirely of completely
contiguous blocks have a high probability of
being present in the instruction cache lines.
The presence of such traces in the trace
cache leads to redundancy and space
wastage.

• Owing to the property that 80% of the time
is spent in 20% of the code, we might be
able to do better than LRU, if we could use a
more informed replacement logic, better
performance benefits can be gleaned.

Our approach to this problem is to make use
of a profile driven approach to design the
replacement of traces in the trace cache. Each
application program is collapsed into smaller
partitions and each of these subsets is profiled in turn,

 Figure 1. The Trace Cache [1]

increasing the locality in the sample stream. The
primary function of the profiling process is to
identify the most frequently used traces and coupling
them with an importance factor, which is a function
of their usage frequency. This process of branding the
traces as important is split into two levels as follows.
Each time a trace is brought into the trace cache, it is
checked whether details pertaining to this trace are
present in a profile table (introduced by the design).
If no such details are found, the trace is placed in the
trace cache and its usage counter is initiated to one.
Thenceforth, each time the trace is hit its usage
counter is incremented. Once its usage increases
beyond a threshold t1, its details are written to an
entry in the profile table. If, after this, the trace is
evicted from the trace cache, its profile table entry is
updated to the last value. If after some time, the same
trace is brought into the trace cache, then these
details are ported to the usage counter of the trace
cache entry. When the usage counter value for any
trace crosses a second threshold t2, its profile table
entry is made irremovable but its usage counter
continues to get updated. If at any point in time, there
is a need for an entry in the profile table, then an
entry whose usage is between t1 and t2 is chosen for
eviction. It should be noted here that entries with
usage counters whose values are greater that t2
cannot be removed. If the profile table gets filled
with such entries, then we start denying the request
for an entry each time it is made, and a counter for
the number of denials is maintained. When this
counter reaches 15 denials, we interrupt the

processor, meaning to imply that the profile has
matured and write the information to a memory file.
In this way, the entire program is used for reaping
information about the usage of traces in each of the
partitions.

Once the entire program is profiled, the
subsequent runs of the program use the profile
information to determine the residency of traces in
the trace cache. The replacement logic is based on the
importance of the traces relative to each other. At
times when the importance factors of two different
traces are the same, superiority is established by the
nature of the blocks in the traces. Traces that consist
of taken branches later in the trace are considered as
better candidates for replacement compared to those
having earlier taken branches.

The overhead of profiling can be by means
of a profiling co-processor [4], or support directly
provided by hardware [5]. In this paper, we abstract
the problem of profiling effectively and present only
the design modifications in the architecture and the
algorithm that can be used for the replacement logic.

This paper is organized as follows. Section 2
skims over the modifications and additions that might
be required in the hardware. Section 3 explains the
process of profile building and run time usage of the
same. Section 4 discusses the perceived benefits
followed by the conclusion in Section 5.

2 Design Issues

The proposed scheme would require certain
modifications to the existing design.

2.1 Profile Table

In order to profile the traces, we would require a
profile table where trace information is maintained
while the subsets are monitored. The table should
accommodate entries for at least as many traces as
can be present in the trace cache at any given time.
Each entry in the profile table should consist of the
following fields:

• Starting block addresses
• Prediction bits corresponding to the blocks in the

traces
• The importance factor corresponding to the trace

usage frequency in each of the program subsets.
Care should be taken to avoid wrap-around of
this field.

• A Mask bit to indicate if the entry can be chosen
for replacement

2.2 Trace Cache Modifications

The trace cache line has to admit a few modifications
to take advantage of the proposed design. Each entry
in the trace cache should include a field to maintain
the pending usage. This would correspond to the
importance factor the first time a profiled trace is
brought into the trace cache.

A bit is included to decide if the trace is an
important one or a non-important one. Usage of this
bit is elaborated in Section 3.2.

3. Profile Scheme

The idea behind our profiling scheme is to identify
the most important traces in each of the program
partitions. When the profile is used in the subsequent
runs, this profile should be able to help us
differentiate between important and not so important
traces. Retention of the frequently used traces helps
reduce overheads in trace reconstruction and wastage
of space in the cache. This conclusion is derived from
the fact that there are chances that sparsely used
traces might replace frequently used traces when the
entire trace cache consists of only important traces.
Misses for the important traces and their construction
may entail this. The authors believe that the proposed
approach might not only increase the trace hits but
also save the line fill buffer logic from extra work.

This section is divided into two subsections;
one explaining the process of profile construction and
the other relates how profiles are used for the
replacement logic.

3.1 Profile Construction

The profile should capture the details about the
frequent traces in a compact manner.

3.1.1 Trace Maturing

When a trace is brought into the trace cache for the
first time, its usage counter is initialized to one.
Every hit increments this counter and when the value
rises above a threshold t1, an entry for this trace is
made in the profile table and all its details like the
starting block addresses, branch pattern bits and the
usage counter value are written into it. Hereafter, hits

update the usage counters both in the trace cache and
the profile table. Even if this trace is removed from
the cache, the entry in the profile table is undisturbed.
The next time (if there is one) the same trace is
brought into the trace cache, its usage counter is
initialized to the value from the profile table and, as
before, is incremented with each hit. Once this usage
counter crosses another threshold t2, we decide the
trace has ‘matured’ and mask its entry in the profile
table by setting the mask bit to 1. When all the entries
are masked its time to write the profile to a file in
memory. It should be noted that all entries continue
to be updated till the profiling is done. The interrupt
strategy that we discuss in Section 3.1.3 helps
building the profile for each partition of the program.

3.1.2 Profile Entry Replacement

It is only natural that all the entries in the profile table
might get filled and a suitable way has to be found to
profile the other traces that might secure hits greater
that t1. We maintain an index into the entries and
follow a simple round-robin replacement of those
entries, which are not masked yet.

3.1.3 Interrupt Strategy

All the entries in the profile table will eventually
mature and no more entries will be available for
replacement and hence all requests for new entries
are denied. Once this happens, we start a counter that
keeps track of the number of denials and when this
reaches a value of 15, its time to write the profile into
a file in memory. An interrupt is generated to be
serviced by the processor. On every profile write, all
the trace cache entries’ usage counter is reset to zero.

3.2 Profile Usage

The profile can be used at runtime if the conditions of
program execution remain the same as when the
profile was initially constructed.
 When the execution environment is
confirmed to not have changed, profiles
corresponding to each subset of the program are
loaded into the profile table. For purposes of this
discussion, let us define important traces as those that
have been profiled and others as not so important
traces. Before a line is constructed by the line fill
buffer logic, the profile table is looked up to
determine if an important trace is going to be

constructed. If a match is found, then the trace is
constructed and loaded into the cache, its usage
counter is set to the importance factor from the
profile table and the importance bit in the trace cache
is set.

If a match is not found, then a random value
between 0 and t1 is computed. This is the value to be
stored in the trace usage counter accompanied by the
resetting of the importance bit, if this trace
successfully finds an entry in the cache. Each time a
trace is hit in the cache, its importance factor is
decremented by one.

The replacement logic is discussed next.
When all lines in the trace cache have their
importance bits set, the following scheme is used.

• If a line constructed by the line fill buffer logic is
an important trace (determined by looking up the
profile table), the trace with the least importance
factor is evicted. The entry corresponding to this
trace in the profile table is modified to reflect the
latest importance factor value.

• If a non important trace is going to be
constructed by the line fill buffer logic, then a
random value between 0 and t1 is computed. If
the new trace’s random value is greater than the
trace with least importance factor, the latter is
replaced by a newly constructed trace else the
new trace is not constructed at all. In case the
new trace finds an entry, then its importance
factor is initiated to the random value computed.

If there are one or more non important traces
in the cache, then an index maintained into the trace
cache evicts the non important traces in a round robin
fashion whenever a new trace is constructed (both
important and non-important).

In the above cases, comparing the prediction
bits between traces having the same importance
factor breaks the tie. Traces that consist of taken
branches earlier in the trace are considered superior.
The rationale behind this decision is explained in
Section 4. If the prediction bits of the traces in
question are identical, one of them is randomly
chosen for eviction.

4 Benefits

Several benefits would arise from the use of an
informed replacement logic. The benefits can be
better appreciated in the light of some trace cache
performance features.

It is seen that the performance of trace
caches increases with an increase in size. The results
used in this section are taken from an exploration of
the trace cache design space [3]. The IPC shown here
is the average for a set of 5 test programs (s95-
compress-small, s95-gcc, s95-li-train, s95-m88ksim-
test and s95-perl-train) of the SimpleScalar toolkit
[6].

Fig 2: Effect of Trace Cache Size on IPC

Increased size in the size of the cache would
allow an increased number of traces to be in the
cache at any given point in time. This would lead to
more hits and performance gain. However, it is
evident that increase in the size is not economical, as
it would increase the power consumption of the
cache. We could do better if we could get more
number of trace hits with the same size of the trace
cache. It is towards this that our scheme tries to
progress. By allowing only the most important traces
i.e. the most frequently used traces to be resident in
the trace cache, the space is used economically and to
its best.

This design tries to do away with situations
wherein a very sparsely used trace might evict a
frequently used trace when the entire cache is full of
frequent traces. The next fetch for this frequent trace
might result in a miss and will lead to reconstruction
of the trace. The sparsely used trace might also be
removed soon from the cache. It is perceived that

such extravagant usage of the trace cache wouldn’t
be permitted in our design.

When a couple of traces are vying for trace
cache residency and happen to have identical
importance factors, our design gives superiority to
those traces that have earlier taken branches (i.e. non-
contiguous blocks appear earlier in the trace). The
rationale behind such an idea is based on two
properties:

i. Multiple branch predictors have a lower
accuracy due to the fact that they have to
predict a number of branches in advance [7].

ii. Contiguous blocks have a high probability
of being found on a single line in the
instruction cache.

From the first property, we see that the accuracy of
multiple branch predictors is limited. Further, the
usefulness of the blocks that comprise the tail of the
trace is appreciably lesser that those that initiate one,
as is illustrated by Figure 3. The values correspond to
an average for 5 programs (same as in Fig.2).

Figure 3: Usefulness of Basic Blocks

The utility of the posterior blocks in a trace (Fig 3) is
seen to be less. This is a manifestation of the poor
accuracy of prediction for the last few blocks by the
multiple branch predictor.

So assuming only the initial blocks in every
trace are useful, we give more importance to traces
which consist of taken-branch blocks in the earlier
part of the trace. These traces might take more cycles
to fetch than those that have contiguous blocks (if
these blocks are present in a single line in the

instruction cache). We base choosing our trace
candidate for eviction, when more than one trace has
the same importance factor, on this explanation.

5 Conclusion

We present a scheme in this paper that tries to
increase the efficiency of trace caches without
increasing their size. The scheme is aimed at
increasing the trace hits by retaining only the most
important traces in the cache.

The authors believe that a cycle level
simulation of the proposed architecture could
quantify the gains lucidly, at the same time bringing
out any expensive trade-off that might have to be
cogitated upon.

6 References

[1] E. Rotenberg, S. Bennett, and J. Smith, “Trace Cache: a
Low Latency Approach to High Bandwidth Instruction
Fetching". In Proceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture, 1996

[2] Tse-Yu Yeh, Deborah T. Marr, Yale N. Patt
“Increasing the Instruction Fetch Rate via Multiple
Branch Prediction and a Branch Address Cache., In
Proc. 7th ACM International Conference on
Supercomputing, 1993

[3] Paul W. Lee, Mahesh J. Madhav, Anamaya Sullerey,
“Exploring the Trace Cache Design Space”, Project Report,
http://cva.stanford.edu/ee482a/projects.html

[4] Craig B. Zilles, Gurindar S. Sohi, “A Programmable
Co-processor for Profiling”. In Proceedings of 7th

International Conference on High Performance Computer
Architecture (HPCA-7), 2001

[5] J.Dean, J.Hicks, C.Waldspurger, W.Weihl, and
G.Chrysos, “Profile Me: Hardware Support for Instruction-
Level Profiling on Out-of-Order Processors”. In
Proceedings of 30th International Symposium on
Microarchitecture, 1997

[6] D.C. Burger and T.M.Austin. The SimpleScalar Tool
Set, Version 2.0. Technical Report CS-TR-97-1342,
University of Wisconsin-Madison, 1997

[7] Q. Jacobson, E. Rotenberg, and J. Smith, “Path-Based
Next Trace Prediction.” In Proceedings of the
30th International Symposium on Microarchitecture,
November 1997

