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Abstract 
The growing demand for portable embedded 
computing devices has revolutionized SOC 
design, and in particular, the field of Intellectual 
Property. In this work, we propose a technique to 
form configurations from sets of IPs that satisfy 
the static system constraints. Here, ‘set’ refers to 
all IPs of same type (or class) that meets the 
user-specified conditions on IP attributes. The 
technical challenge lies in the huge number of 
potential configurations (i.e., the search-space 
exploration). A ‘configuration’ refers to a 
possible system configuration made up of one 
and only one IP from each of the above sets of 
IPs. The proposed approach extensively prunes 
this potentially large search space by taking 
advantage of vendor-specified IP attributes and 
employs the dynamic programming algorithm to 
yield a ranked list of configurations. The 
proposed approach also yields the total cost and 
area estimate of each configuration. The 
experimental results show that the proposed 
approach is effective in forming configurations 
that satisfy the static system constraints of cost 
and area. 
 
1. Introduction 
The growing requirements on the correct design 
of a high-performance system in a short time 
force us to use Intellectual Property in many 
designs. As the market pressures and product 
complexities increase, the pressure to reuse 
complex building blocks (also known as 
Intellectual Property or IP) increases 
significantly. This paper addresses the following 
aspects of IP-based embedded system design: 
search-space reduction, forming configurations 
and checking for optimality with respect to 
designer-specified static constraints. Moreover, 
we have many vendors providing IPs and there is 
no universal tool that searches for IPs from all 
the vendors simultaneously.  The designer has to 
use search engines that are vendor-specific. 
Often, the designer will need to check products 
of various vendors in order to decide his optimal 
configuration. This process is cumbersome since 
the search tools currently used are vendor-
specific and there is no generic tool that 

integrates the products of different vendors and 
thus helps the designer in his search for optimal 
configuration. The Intellectual Property Optimal 
Selection Tool or the IPOST [1] is an effort in 
this regard, which integrates all the IPs from 
various vendors in its search process and yields 
an optimal set as per the designer’s needs. The 
IPOST is a complete tool, which facilitates the 
design of SOC from the behavioral specification 
to a complete SOC.  The grand vision of IPOST 
has been shown in figure1 below. The IPOST 
has been divided into 5 levels [1]: 
IPOST – Level -1 
This level performs architectural exploration and 
a high level pruning of these generated 
architectures. This output is passed to level 0. 
This level is uncommonly called so because it 
was non-existent for some time and only later, 
figured in the design flow. 
IPOST – Level 0 
This level generates attributes for each of the 
architectural components generated by level -1. 
These attributes enable the designer to go into 
the web to search for the IPs. For example, an 
attribute of MB is generated for memory element 
and a value is also generated after analyzing the 
system requirements and application 
specifications. This output (i.e, attributes and its 
values) is passed to level 0. 
IPOST – Level 1 
This level aims more at facilitating the design of 
the system by optimizing the search and 
retrieval. This includes the selection of set of 
IP’s for the system taking attributes and some 
user defined constraints (System and IP specific) 
during the selection procedure. The search 
optimization helps the designer to retrieve more 
results from many different databases by many 
different IP Providers. Each IP is searched on 
heterogeneous databases through the web-portal 
[2]. Level1 thus provides sets of IPs from a 
query depending on attributes. 
IPOST – Level 2 (Optimal Set Generator) 
These results obtained from level 1 are set for 
IP’s and these set of IP’s are now optimized to 
provide configurations. The Level 2 (also 
described as Optimal Set Generator) take user 
defined system constraints which help us in 
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defining the possible configurations depending on these constraints. 

 
 
IPOST – Level 3  
The Level 3 provides a dual purpose. It provides 
functional verification of the selected IP 
configurations and also provided a simulation to 
verify the user constraints. Level 3 has the 
following main functions: 

• It provides the functional verification of 
the set of IP’s and allows us to select 
the best set of IP’s which meet all the 
user requirements. 

• It provided the simulation of the SOC 
environment to make sure that the IP set 
meets all the user defined system level 
constraints. 

• It also provides the mapping of 
behavioral specification to IP specific 
definitions at a higher level.  

Level2 of the IPOST, also called the optimal set 
generator, forms configurations from the sets of 
IPs that satisfy static and dynamic system 
constraints. Level3 aims at providing functional 
verification of the IP configurations and also 
provides simulation of the SOC environment in 
order to verify that the IP configuration meets all 
system level constraints. In this paper, we 
explore the various search-space reduction 
algorithms available for the designer and propose 
an approach to form configurations from a 

reduced-search-space, which satisfy the static 
system constraints.  
We have got sets of IPs coming in from Level1 
and we want to form configurations of the IPs of 
these sets, which satisfy the system constraints, 
both static and dynamic. In our approach, we 
attack the static constraints first and then 
consider the dynamic constraints. The reason for 
this is that checking for dynamic constraints 
implies performing simulations on the 
configurations obtained. Instead of performing 
simulations on all the configurations, we break 
up the approach into 2 stages as Level2.1 and 
Level2.2. We first check the configurations for 
static constraints and perform a static analysis on 
these in order to evaluate the performance. We 
then feed this subset of configurations to the next 
stage where we check for dynamic constraints. 
Thus, we input a greatly reduced number of 
configurations to Level2.2. 
To summarize, Level 2 is divided into 2 stages, 
Level2.1 and Level2.2. In Level2.1, we form 
configurations and check these for static 
constraints and at Level2.2, we check for 
dynamic configurations. In this paper, we 
propose an approach to solve Level2.1. 
The Level 2.1 of the IPOST Tool aims at 
providing a configuration of IPs, which satisfies 
the static system constraints.  
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The figure above shows ‘n’ sets of IPs each 
having same or different number of IPs. These 
sets could represent sets of Processors, 
Memories, Peripherals, and the like. The 
objective is to form configurations out of these 
IPs, which satisfy the static system constraints of 
cost and area, with each configuration containing 
one IP from each of the sets. For example, if the 
outputs of Level1 are 3 sets of IPs namely, 
Processors, Memory and Peripherals, with 3 IPs 
in each, then, some of the possible 
configurations are Processor1_Intel, Memory1_ 
Philips, and Peripheral1_Motorola and so on. 
The designer will have fixed allocations of cost 
and area for the entire system design and the 
configurations thus formed must satisfy these 
static system constraints. 
     
Level2.1 forms configurations from the sets of 
IPs that satisfy the static system constraints of 
cost and area. If the designer needs, it will also 
rank these configurations. This paper proposes 
an approach to solve level 2.1 of IPOST. The 
proposed approach efficiently explores the 
configuration space and outputs a set of optimal 
configurations, which satisfy the static system 
constraints. 
The rest of the paper is organized as follows: In 
the next section, we state the problem and 
section 3 gives a background of the algorithms 
used for search-space reduction and some 
approaches followed to efficiently prune the vast 
search-space. In section 4, we explain the 

proposed algorithm. Finally, we present the 
results and conclusions in section 5. 
 
2. The Problem 
The primary problem faced by system designers 
is pruning the search-space to form optimal 
configurations which satisfy certain constraints. 
The formation of configurations involves 
exploration of a search-space which is extremely 
vast. Once the configurations have been formed, 
each one of these configurations ought to be 
checked for constraints. This process of 
analyzing several “functionally equivalent” 
implementation alternatives to identify an 
optimal solution is referred to as “design space 
exploration”.  
The problem addressed by this paper is as 
follows: Firstly, we have to prune the vast search 
space and form configurations of IPs from sets of 
IPs (which are the outputs of Level1 of IPOST). 
These configurations are subject to the static 
constraints of total cost and total area which are 
specified by the designer. Also, IPs are subjected 
to cost and area constraints specified by the 
respective IP vendor. Therefore, the 
configurations thus formed, must satisfy the 
static system constraints of total cost and total 
area. Secondly, we have to rank these 
configurations, taking into account the total cost 
and total area of each configuration. The 
proposed approach uses the dynamic 
programming algorithm [9] to form the optimal 
configurations.  
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3. Background 
Efforts have been made in the past to reduce the 
search-space and form optimal configurations. 
An approach to perform rapid design space 
exploration is explained in [3]. [3] discusses 
design space exploration based on constraint 
satisfaction and high-level performance 
estimation in the context of application design on 
heterogeneous embedded architectures. The 
integration of a design space exploration tool 
(DESERT) and high-level system wide latency 
and energy estimation tool (HiPerE) into the 
proposed MILAN framework facilitates 
multigranular simulation and updation of 
performance estimates. But, since the primary 
emphasis of [3] is performance estimation, we do 
not explore this tool in detail in our paper. On 
the contrary, our paper not only proposes an 
efficient approach to form configurations, but 
also performs optimality check on these 
configurations. Nevertheless, the reader can get a 
more clear insight into design space exploration 
in the above-mentioned paper.  
The Strength Pareto Evolutionary Algorithm or 
the SPEA is an evolutionary algorithm [4], [5], 
[11], [17] which performs multi-objective 
optimization using the ideas of genetics [10] and 
clustering algorithms to perform search space 
reduction. But this algorithm uses dynamic 
constraints in its effort to perform optimization 
whereas in our problem, we are dealing only 
with static constraints.  
The basic idea in most of the algorithms is to 
reduce the search space by forming subsets of 
the initial group based on some static or dynamic 
parameters, which are user-specified. 
The brute force algorithm [12] is definitely the 
last option for a design engineer, mainly due to 
the enormous complexity of the algorithm, 
which increases as the search space is increased. 
The clustering process [6], [16] is widely used in 
search space reduction in many approaches. The 
entire search space can be effectively pruned 
using this algorithm. In the SPEA algorithm 
discussed above, cluster distances between 
different individuals are used in the process. 
Thus, here, a dynamic property is used to merge 
multiple closeness metrics into a single closeness 
value. In our problem, we are dealing with static 
constraints. We propose to use the implicit static 
attributes of the IPs in order to reduce the search 
space. This approach is explained in detail later. 
In group migration [6], ratio-cut [7] and 
simulated annealing [8], a variant of the idea 
employed in clustering is used. The metric used 
in clustering algorithms is ‘distance’ whereas in 

these three, ‘cost’ is the metric used, the primary 
idea being the same. In our approach, we use the 
‘cost’ metric in the dynamic programming 
algorithm and hence, we restrict ourselves to the 
metric ‘attributes’ to perform the process of 
clustering. 
The Pareto-optimal [11] approach requires 
simulations, which take a lot of time and the 
designer may not be interested to perform 
simulations so early in the design process. 
Moreover, this approach acts on dynamic 
constraints, whereas we are dealing with static 
constraints in our approach. Hence, it is not 
suitable for our case. 
In the SPEA algorithm, the idea of fitness 
assignment can be used in our approach. The 
“fitness” is evaluated based on dynamic 
parameters, but we can use the idea for static 
parameters, which is explained in the subsequent 
sections. Also, used in this algorithm is the 
process of clustering, which can be employed in 
our approach as stated earlier. 
 
The proposed approach forms configurations 
which satisfy the static system constraints of cost 
and area and ranks these configurations. It can 
thus be termed as a multi-objective optimization 
algorithm. This is accomplished by employing 
the dynamic programming algorithm and uses 
the idea of clustering to prune the search space.  
 
4. Proposed Approach 
The objective of the proposed approach is to 
form configurations which satisfy the static 
system constraints of cost and area. Each 
configuration must contain one IP from each of 
the sets of IPs obtained from level1.  
The proposed approach uses the ideas of fitness 
assignment and clustering algorithms discussed 
above to prune the search space and finally apply 
the reduced set of inputs to the dynamic 
programming algorithm, which forms 
configurations, which satisfy the static system 
constraints namely cost and area. The IP vendor 
provides the cost and area for each IP and the 
designer is allocated a fixed cost and area for the 
entire system design. Hence, we have taken cost 
and area as static constraints. A more detailed 
explanation of static and dynamic constraints in 
the process of SoC design is provided in [13]. 
The proposed approach consists of the following 
ideas. 
 Fitness evaluation: The cost and area 
specifications of the IP are normalized. Thus, the 
idea of fitness, which is used in SPEA algorithm 
on dynamic constraints, is used on the static 
constraints in our approach. We then compare 
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these normalized values with a threshold and 
eliminate those IPs, which are beyond our range. 
For example, if the designer wants to allocate 
60% of the total cost allocation to the class of 
processors, then we can eliminate all the IPs, 
which are beyond this range. 
 Dynamic Programming Algorithm: Dynamic 
Programming [9], [12] is a technique for solving 
problems with overlapping sub problems. 
Typically, these sub problems arise from a 
recurrence relating a solution to a given problem 
with solutions to its smaller sub problems of the 
same type. Rather than solving overlapping sub 
problems again and again, dynamic 

programming suggests solving each of the 
smaller sub problems only once and recording 
the results in a table from which we can obtain a 
solution to the original problem. The IPs of the 
first set are taken and then, tested for 
compatibility with IPs of other sets using the 
idea of clustering. We propose to use the implicit 
system constraints, that is, the VSIA specified IP 
attributes [14] to perform clustering. This step 
helps to avoid unnecessary inputs from entering 
the next step of the dynamic programming 
algorithm, which in-turn increases the efficiency 
of the approach. 

 
The figure above illustrates our approach. The 
IPs of set1 are copied to stage 1 of dynamic 
programming. The cost and area constraints are 
input to stage 1 and the IPs whose cost or area 
exceeds the constraint values are discarded. A 
compatibility check is also performed at this 
stage with the IPs of other sets. The VSIA-
defined attributes [14] are used to perform this 
check 
These ideas are summarized in the following 
steps. 

 
Step1: Normalize [15] the cost and area of each 
IP of all the sets using the formula: 
Cost = a*wcost*cost/c’ + b*warea*area/a’ 
where 
Cost=dynamically weighted cost function 
a=a weight on a scale of 10assigned by the 
designer 
wcost =cost constraint specified by the designer 
cost=cost of the particular IP considered 
c’=average cost of all IPs in the particular set 

(Designer Specified Constraints) 
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b=a weight on a scale of 10 assigned by the 
designer 
warea =area constraint specified by the designer 
area= area of the particular IP considered 
a’=average area of all IPs in the particular set 
 
Compare these normalized values of cost and 
area with some threshold, which is a static value 
in terms of cost and area. And neglect those IPs 
which cannot be potential candidates in the 
optimal configuration. 
Step2: Here, we apply the dynamic 
programming algorithm. This step is divided into 
stages and the number of stages equals the 
number of sets of IPs.  
In stage1, we form an initial table consisting of 
the cost and area of set1. After this, we check for 
the compatibility of IPs of this set with the IPs of 
other sets. For this, we use the inbuilt IP 
attributes specified by the VSIA [14]. This helps 
us to eliminate unwanted inputs from entering 
the subsequent stages of the dynamic 
programming algorithm.  

In the subsequent stages, combinations of IPs 
from sets are formed which satisfy the static 
system constraints. The termination condition is 
met when configurations have been formed with 
each configuration containing one IP from each 
of the sets. 
Step3: Here, we rank the configurations formed 
by calculating the normalized values of cost and 
area obtained in the previous table by using the 
formula:  

(x-min)/ (max-min)*weight 

where   

 min=minimum of the list 

 max=maximum of the list 

 weight=value of cost or area, whichever the 
designer wants to emphasize more. 
 
4.3 Toy Example 
We shall now take a toy example (in the form of 
outputs of Level1) and carry it out all the way to 
the production of outputs of level 2.1. 

 

Table1: 

Outputs of Level1: Sets of IPs 
 

Set1 Set2 Set3  
IP 
 

Cost Area Cost Area Cost Area 

1 7 2 2 7 3 6 
2 5 3 1 4 4 8 
3 3 5 3 2 3 2 
4 6 5 1 3 1 4 
5 2 4 5 2 5 3 
6 1 3 4 3 6 3 
7 5 8 6 4 4 6 
8 6 3 5 2 5 8 
 
 
 
 We have to make configurations that meet the 
static system constraints of cost=$10 and 
area=10 m2, where each configuration has 1 
representation from each of the IP sets. 

 
Step1: Normalization [15] is calculated as 
follows: We shall express the cost and area of 
each of the IPs by a dynamically weighted cost 
function as follows: 
Cost = a*wcost*cost/c’ + b*warea*area/a’ 
where 

Cost=dynamically weighted cost function 
a=a weight on a scale of 10assigned by the 
designer 
wcost =cost constraint specified by the designer 
cost=cost of the particular IP considered 
c’=average cost of all IPs in the particular set 
b=a weight on a scale of 10 assigned by the 
designer 
warea =area constraint specified by the designer 
area= area of the particular IP considered 
a’=average area of all IPs in the particular set 
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Table2: Normalization 
IP 
 

Cost of Set1 Cost of Set2 Cost of Set3 

1 2.606 3.33 2.46 
2 2.33 1.85 3.29 
3 2.37 1.85 1.46 
4 3.22 1.11 1.32 
5 1.78 2.59 2.36 
6 1.19 2.59 2.68 
7 3.85 3.7 1.62 
8 2.62 2.59 3.61 
 
Comparing these normalized values of cost and 
area with some threshold, which is a static value 
in terms of cost and area, we neglect those IPs 
that cannot be potential candidates in the optimal 
configuration.  
Thus, normalization helps us to evaluate the so-
called ‘Fitness’ or the weight of each of the IPs, 
and these are compared with a threshold and the 
unwanted IPs are removed, thus reducing the 
search space, as shown in table below. 
Step2: Application of Dynamic Programming 
We have used the dynamic programming 
algorithm on two constraints, namely 
cost and area. Hence we shall revert 
back to the cost and area values of each 
of the IPs. Now, lets assume that the 
total cost allocated to the designer =$10 
and the total area allocated for the entire 
system=10m2. 
The conclusion at the end of stage1 is that all 
these IPs can be potential members of the 
optimal configuration.  
After stage1, we intend to check for 
compatibility of IPs. For example, if the designer 
is looking for a 16-bit processor, then an IP of 
32-bit word length from the class of memory will 

not be compatible with the required search. 
Hence it is discarded. In-fact using the IP 
attributes, we can define some rules for checking 
compatibility.  Thus, we are making use of 
implicit system constraints to discard unwanted 
solutions from entering the subsequent steps of 
dynamic programming.  
 
Table3: Stage1 of Dynamic Programming 
Algorithm 

Set1 IP 
 Cost Area 
1 7 2 
2 5 3 
3 3 5 
4 6 5 
5 2 4 
 
Stage2: The possible configurations of sets 1 and 
2, which satisfy static system constraints, are 
evaluated in this stage. 
Stage3: The possible configurations of sets 1,2 
and 3, which satisfy the system constraints, are: 
Thus the optimal configurations that satisfy the 
system constraints are: IP3_Set1, IP3_Set2, 
IP3_Set3; IP3_Set1, IP2_Set2, IP3_Set3 and so 
on. 

 
Table4: Stage 3 of dynamic programming algorithm 
 
Cost combinations Total cost Total area consumed 
3,3,3 9 9 
3,1,3 7 10 
6,1,3 10 10 
2,1,3 6 10 
2,3,3 8 8 
2,3,5 10 9 
2,1,3 6 9 
2,1,5 8 10 
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Step3: Ranking of the configurations: 

We use the following formula for ranking 
the configurations obtained: (x-min)/ (max-
min)*weight 

where   

min=minimum of the list 

 max=maximum of the list 

 weight=value of cost or area, whichever the 
designer wants to emphasize more.      

Thus, the configurations are ranked as follows: 
IP5_Set1, IP2_Set2, IP1_Set3; IP5_Set1, 
IP2_Set2, IP3_Set3; IP3_Set1, IP2_Set2, 
IP3_Set3 and so on. 

5. Results 
This section is divided into the following 2 sub-
sections: In 5.1, we discuss the experimental 
results 
5.1 Experimental Results 
We shall compare the proposed approach with 
the brute force algorithm in terms of number of 
configurations explored. We used C++ as a 
programming tool to verify our results. We took 
a simple input with 3 sets of IPs with 5 IPs in 
each. The system designer specifies the static 
constraints of cost and area. The designer is 
allocated a certain cost and area for his system. 
Our algorithm has to form configurations of 
these sets with each configuration having one 
representation from each of the sets. 

 
 Set1 Set2 Set3 
 cost area cost area Cost area 
IP1 7 2 2 7 3 6 
IP2 5 4 1 4 4 8 
IP3 3 5 3 2 3 6 
IP4 6 5 1 6 1 4 
IP5 2 4 5 5 5 3 
 
For the above set of inputs, if the designer has the overall system constraints of 10 and 10 respectively for 
cost and area, then the brute force algorithm output is as follows: 
“The valid configurations are  
      1. IP1_Set1, IP2_Set2 and IP4_Set3; 
      2. IP2_Set1, IP3_Set2 and IP4_Set3; 
      3. IP5_Set1, IP3_Set2 and IP4_Set3; 
      4. IP5_Set1, IP3_Set2 and IP5_Set3. 
Number of configurations generated in total: 125” 
For the same set of inputs, the dynamic programming yields the same result as above, but the major change 
is that “Number of configurations generated in total: 85”. 
Now, if the designer specifies the overall system constraints of cost and area as 6 and 8 respectively, then, 
no configuration formed from the above sets satisfy these constraints, yet there is a marked difference in 
the total number of configurations generated: The brute force algorithm generates 125 configurations, 
whereas the dynamic programming generates only 20 configurations. 
The Brute Force Algorithm looked at 53 =125 configurations and compares the total cost and area of each 
configuration with the total allocation and retains the configuration only if it is below the total allocation. 
On the other hand, the dynamic algorithm does not look at all the configurations; it only looks at those 
configurations that satisfy the static system constraints. Hence, the number of configurations looked at will 
depend on the total allocation of cost and area for the system. Unlike the brute force algorithm, which 
forms all possible configurations, dynamic algorithm forms only those, which satisfy the static system 
constraints. In the above example, for the same values of cost and area constraint (10 and 10 respectively) 
for both the algorithms, 85 configurations are looked at, thus, providing a 32% improvement. If the cost 
and area allocation were reduced to lower values, say 6 and 8, for the same set of inputs, the number of 
configurations explored remains 125 in the brute force, but is drastically reduced to 20 in the dynamic 
programming algorithm, thus providing an improvement of 84%. 
We have shown the experimental results for various scenarios in the form of graphical representations. 
Figure 4 is a plot of number of configurations vs. number of sets of IPs, with each set having the same 
number of IPs. Number of configurations explored is directly proportional to the time required for the 
execution of the algorithm. As can be seen from the graph, fewer configurations are explored by the 
dynamic programming algorithm when compared to the brute force algorithm. The next three scenarios 
involve varying one of the constraints namely cost/area and varying both while calculating the number of 
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configurations explored. In all the cases, the number of sets of IPs considered was 5 and each set had 5 IPs. 
It is evident from the graphs that the number of configurations explored by the proposed approach is much 
less compared to the brute force algorithm. 
 

As is evident from the above graph, the brute force algorithm follows an exponential curve in terms of 
number of configurations explored. As the number of sets of IPs increase, the number of configurations 
explored by brute force increases. But in the case of dynamic programming algorithm, the number of 
configurations explored depends on the total constraint allocation for the whole system. Nevertheless, the 
number of configurations explored will be much less than the brute force algorithm.
 

 
Fig. 5 illustrates the plot of number of configurations explored for different values of area, with the cost 
constraint being constant. The number of configurations explored by the brute force remains constant at 
3125 irrespective of the area constraint. 
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Fig.6 shows the graph of number of configurations explored for different values of cost, with the area 
constraint being constant. As in the previous scenario, the number of configurations explored by brute force 
algorithm remains constant at 3125 irrespective of the value of cost constraint.  

 
Fig.7 illustrates a plot of number of configurations explored with varying values of cost and area 
constraints. Again, the number of configurations explored by the brute force algorithm remains constant at 
3125 whereas the proposed approach explores much less configurations. 
 
5.2 Conclusions 
In this paper, we have presented an approach, which performs an efficient search space reduction and forms 
configurations from sets of IPs, which satisfy the static system constraints of cost and area. This was 
possible by using ideas of fitness evaluation from the Strength Pareto Evolutionary Algorithm (SPEA), the 
clustering algorithm and the dynamic programming algorithm. We also used the VSIA-defined attributes in 
this approach in order to make the tool more intelligent. These attributes enable us to check for 
compatibility of IPs and hence, help in reducing the search space.  Thus, the proposed approach is very 
efficient as it explores fewer configurations and hence execution time is also higher than the brute force 
algorithm. The experimental results and the graphs clearly illustrate the efficiency of the proposed 
approach. The graphs were constructed in various scenarios and all the plots show that the proposed 
approach is superior to the conventional brute force approach in terms of the execution time, which is a 
measure of the number of configurations explored. This approach can be adopted by IP-based embedded-
system designers to form optimal configurations which satisfy the static system constraints of cost and area. 
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