
 1

An efficient Approach for Design Space Exploration using Static Constraints for

IP-based SOC Design
Abhishek Agarwal,* Ananth.K.S,* Nikitas A Alexandridis, * Tarek EI-Ghazawi,*

and Sean X. Wang†
*Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052;

†Department of Information and Software Engineering, George Mason University, Fairfax, VA 22030

Abstract
The growing demand for portable embedded
computing devices has revolutionized SOC
design, and in particular, the field of Intellectual
Property. In this work, we propose a technique to
form configurations from sets of IPs that satisfy
the static system constraints. Here, ‘set’ refers to
all IPs of same type (or class) that meets the
user-specified conditions on IP attributes. The
technical challenge lies in the huge number of
potential configurations (i.e., the search-space
exploration). A ‘configuration’ refers to a
possible system configuration made up of one
and only one IP from each of the above sets of
IPs. The proposed approach extensively prunes
this potentially large search space by taking
advantage of vendor-specified IP attributes and
employs the dynamic programming algorithm to
yield a ranked list of configurations. The
proposed approach also yields the total cost and
area estimate of each configuration. The
experimental results show that the proposed
approach is effective in forming configurations
that satisfy the static system constraints of cost
and area.

1. Introduction
The growing requirements on the correct design
of a high-performance system in a short time
force us to use Intellectual Property in many
designs. As the market pressures and product
complexities increase, the pressure to reuse
complex building blocks (also known as
Intellectual Property or IP) increases
significantly. This paper addresses the following
aspects of IP-based embedded system design:
search-space reduction, forming configurations
and checking for optimality with respect to
designer-specified static constraints. Moreover,
we have many vendors providing IPs and there is
no universal tool that searches for IPs from all
the vendors simultaneously. The designer has to
use search engines that are vendor-specific.
Often, the designer will need to check products
of various vendors in order to decide his optimal
configuration. This process is cumbersome since
the search tools currently used are vendor-
specific and there is no generic tool that

integrates the products of different vendors and
thus helps the designer in his search for optimal
configuration. The Intellectual Property Optimal
Selection Tool or the IPOST [1] is an effort in
this regard, which integrates all the IPs from
various vendors in its search process and yields
an optimal set as per the designer’s needs. The
IPOST is a complete tool, which facilitates the
design of SOC from the behavioral specification
to a complete SOC. The grand vision of IPOST
has been shown in figure1 below. The IPOST
has been divided into 5 levels [1]:
IPOST – Level -1
This level performs architectural exploration and
a high level pruning of these generated
architectures. This output is passed to level 0.
This level is uncommonly called so because it
was non-existent for some time and only later,
figured in the design flow.
IPOST – Level 0
This level generates attributes for each of the
architectural components generated by level -1.
These attributes enable the designer to go into
the web to search for the IPs. For example, an
attribute of MB is generated for memory element
and a value is also generated after analyzing the
system requirements and application
specifications. This output (i.e, attributes and its
values) is passed to level 0.
IPOST – Level 1
This level aims more at facilitating the design of
the system by optimizing the search and
retrieval. This includes the selection of set of
IP’s for the system taking attributes and some
user defined constraints (System and IP specific)
during the selection procedure. The search
optimization helps the designer to retrieve more
results from many different databases by many
different IP Providers. Each IP is searched on
heterogeneous databases through the web-portal
[2]. Level1 thus provides sets of IPs from a
query depending on attributes.
IPOST – Level 2 (Optimal Set Generator)
These results obtained from level 1 are set for
IP’s and these set of IP’s are now optimized to
provide configurations. The Level 2 (also
described as Optimal Set Generator) take user
defined system constraints which help us in

 2

defining the possible configurations depending on these constraints.

IPOST – Level 3
The Level 3 provides a dual purpose. It provides
functional verification of the selected IP
configurations and also provided a simulation to
verify the user constraints. Level 3 has the
following main functions:

• It provides the functional verification of
the set of IP’s and allows us to select
the best set of IP’s which meet all the
user requirements.

• It provided the simulation of the SOC
environment to make sure that the IP set
meets all the user defined system level
constraints.

• It also provides the mapping of
behavioral specification to IP specific
definitions at a higher level.

Level2 of the IPOST, also called the optimal set
generator, forms configurations from the sets of
IPs that satisfy static and dynamic system
constraints. Level3 aims at providing functional
verification of the IP configurations and also
provides simulation of the SOC environment in
order to verify that the IP configuration meets all
system level constraints. In this paper, we
explore the various search-space reduction
algorithms available for the designer and propose
an approach to form configurations from a

reduced-search-space, which satisfy the static
system constraints.
We have got sets of IPs coming in from Level1
and we want to form configurations of the IPs of
these sets, which satisfy the system constraints,
both static and dynamic. In our approach, we
attack the static constraints first and then
consider the dynamic constraints. The reason for
this is that checking for dynamic constraints
implies performing simulations on the
configurations obtained. Instead of performing
simulations on all the configurations, we break
up the approach into 2 stages as Level2.1 and
Level2.2. We first check the configurations for
static constraints and perform a static analysis on
these in order to evaluate the performance. We
then feed this subset of configurations to the next
stage where we check for dynamic constraints.
Thus, we input a greatly reduced number of
configurations to Level2.2.
To summarize, Level 2 is divided into 2 stages,
Level2.1 and Level2.2. In Level2.1, we form
configurations and check these for static
constraints and at Level2.2, we check for
dynamic configurations. In this paper, we
propose an approach to solve Level2.1.
The Level 2.1 of the IPOST Tool aims at
providing a configuration of IPs, which satisfies
the static system constraints.

E

CBA

requirements

Level -1
Architecture
exploration

Level 0
Attribute

generation

Level 1
Web search
for IPs that
satisfy the
attributes

from Level 0

Level 2 Static Analysis of
static and dynamic constraints

2.1
static

2.2
dynamic

Level 3
Functional
simulation

A : pruned set of architectures
B : attributes of the components of the architecture(s)
C : ‘sets’ of IPs which satisfy the designer-specified
attributes
D : configurations satisfying static constraints
E : task-mapped configurations satisfying static analysis of
 static and dynamic constraints

Task graph of the
application

D

Fig.1 Block Diagram of IPOST

 3

The figure above shows ‘n’ sets of IPs each
having same or different number of IPs. These
sets could represent sets of Processors,
Memories, Peripherals, and the like. The
objective is to form configurations out of these
IPs, which satisfy the static system constraints of
cost and area, with each configuration containing
one IP from each of the sets. For example, if the
outputs of Level1 are 3 sets of IPs namely,
Processors, Memory and Peripherals, with 3 IPs
in each, then, some of the possible
configurations are Processor1_Intel, Memory1_
Philips, and Peripheral1_Motorola and so on.
The designer will have fixed allocations of cost
and area for the entire system design and the
configurations thus formed must satisfy these
static system constraints.

Level2.1 forms configurations from the sets of
IPs that satisfy the static system constraints of
cost and area. If the designer needs, it will also
rank these configurations. This paper proposes
an approach to solve level 2.1 of IPOST. The
proposed approach efficiently explores the
configuration space and outputs a set of optimal
configurations, which satisfy the static system
constraints.
The rest of the paper is organized as follows: In
the next section, we state the problem and
section 3 gives a background of the algorithms
used for search-space reduction and some
approaches followed to efficiently prune the vast
search-space. In section 4, we explain the

proposed algorithm. Finally, we present the
results and conclusions in section 5.

2. The Problem
The primary problem faced by system designers
is pruning the search-space to form optimal
configurations which satisfy certain constraints.
The formation of configurations involves
exploration of a search-space which is extremely
vast. Once the configurations have been formed,
each one of these configurations ought to be
checked for constraints. This process of
analyzing several “functionally equivalent”
implementation alternatives to identify an
optimal solution is referred to as “design space
exploration”.
The problem addressed by this paper is as
follows: Firstly, we have to prune the vast search
space and form configurations of IPs from sets of
IPs (which are the outputs of Level1 of IPOST).
These configurations are subject to the static
constraints of total cost and total area which are
specified by the designer. Also, IPs are subjected
to cost and area constraints specified by the
respective IP vendor. Therefore, the
configurations thus formed, must satisfy the
static system constraints of total cost and total
area. Secondly, we have to rank these
configurations, taking into account the total cost
and total area of each configuration. The
proposed approach uses the dynamic
programming algorithm [9] to form the optimal
configurations.

IP1
IP2

IPx

Static system constraints
area cost

Configuration m

Configuration 2

Configuration 1
Form configurations

that fulfill static
system constraints

Level 2.1
Each configuration has

one representative
from each set

x*y*z*k>>m

IP1
IP2

IPx

Set1

Setk

Fig.2 Block Diagram of Level 2.1 of IPOST

 4

3. Background
Efforts have been made in the past to reduce the
search-space and form optimal configurations.
An approach to perform rapid design space
exploration is explained in [3]. [3] discusses
design space exploration based on constraint
satisfaction and high-level performance
estimation in the context of application design on
heterogeneous embedded architectures. The
integration of a design space exploration tool
(DESERT) and high-level system wide latency
and energy estimation tool (HiPerE) into the
proposed MILAN framework facilitates
multigranular simulation and updation of
performance estimates. But, since the primary
emphasis of [3] is performance estimation, we do
not explore this tool in detail in our paper. On
the contrary, our paper not only proposes an
efficient approach to form configurations, but
also performs optimality check on these
configurations. Nevertheless, the reader can get a
more clear insight into design space exploration
in the above-mentioned paper.
The Strength Pareto Evolutionary Algorithm or
the SPEA is an evolutionary algorithm [4], [5],
[11], [17] which performs multi-objective
optimization using the ideas of genetics [10] and
clustering algorithms to perform search space
reduction. But this algorithm uses dynamic
constraints in its effort to perform optimization
whereas in our problem, we are dealing only
with static constraints.
The basic idea in most of the algorithms is to
reduce the search space by forming subsets of
the initial group based on some static or dynamic
parameters, which are user-specified.
The brute force algorithm [12] is definitely the
last option for a design engineer, mainly due to
the enormous complexity of the algorithm,
which increases as the search space is increased.
The clustering process [6], [16] is widely used in
search space reduction in many approaches. The
entire search space can be effectively pruned
using this algorithm. In the SPEA algorithm
discussed above, cluster distances between
different individuals are used in the process.
Thus, here, a dynamic property is used to merge
multiple closeness metrics into a single closeness
value. In our problem, we are dealing with static
constraints. We propose to use the implicit static
attributes of the IPs in order to reduce the search
space. This approach is explained in detail later.
In group migration [6], ratio-cut [7] and
simulated annealing [8], a variant of the idea
employed in clustering is used. The metric used
in clustering algorithms is ‘distance’ whereas in

these three, ‘cost’ is the metric used, the primary
idea being the same. In our approach, we use the
‘cost’ metric in the dynamic programming
algorithm and hence, we restrict ourselves to the
metric ‘attributes’ to perform the process of
clustering.
The Pareto-optimal [11] approach requires
simulations, which take a lot of time and the
designer may not be interested to perform
simulations so early in the design process.
Moreover, this approach acts on dynamic
constraints, whereas we are dealing with static
constraints in our approach. Hence, it is not
suitable for our case.
In the SPEA algorithm, the idea of fitness
assignment can be used in our approach. The
“fitness” is evaluated based on dynamic
parameters, but we can use the idea for static
parameters, which is explained in the subsequent
sections. Also, used in this algorithm is the
process of clustering, which can be employed in
our approach as stated earlier.

The proposed approach forms configurations
which satisfy the static system constraints of cost
and area and ranks these configurations. It can
thus be termed as a multi-objective optimization
algorithm. This is accomplished by employing
the dynamic programming algorithm and uses
the idea of clustering to prune the search space.

4. Proposed Approach
The objective of the proposed approach is to
form configurations which satisfy the static
system constraints of cost and area. Each
configuration must contain one IP from each of
the sets of IPs obtained from level1.
The proposed approach uses the ideas of fitness
assignment and clustering algorithms discussed
above to prune the search space and finally apply
the reduced set of inputs to the dynamic
programming algorithm, which forms
configurations, which satisfy the static system
constraints namely cost and area. The IP vendor
provides the cost and area for each IP and the
designer is allocated a fixed cost and area for the
entire system design. Hence, we have taken cost
and area as static constraints. A more detailed
explanation of static and dynamic constraints in
the process of SoC design is provided in [13].
The proposed approach consists of the following
ideas.
 Fitness evaluation: The cost and area
specifications of the IP are normalized. Thus, the
idea of fitness, which is used in SPEA algorithm
on dynamic constraints, is used on the static
constraints in our approach. We then compare

 5

these normalized values with a threshold and
eliminate those IPs, which are beyond our range.
For example, if the designer wants to allocate
60% of the total cost allocation to the class of
processors, then we can eliminate all the IPs,
which are beyond this range.
 Dynamic Programming Algorithm: Dynamic
Programming [9], [12] is a technique for solving
problems with overlapping sub problems.
Typically, these sub problems arise from a
recurrence relating a solution to a given problem
with solutions to its smaller sub problems of the
same type. Rather than solving overlapping sub
problems again and again, dynamic

programming suggests solving each of the
smaller sub problems only once and recording
the results in a table from which we can obtain a
solution to the original problem. The IPs of the
first set are taken and then, tested for
compatibility with IPs of other sets using the
idea of clustering. We propose to use the implicit
system constraints, that is, the VSIA specified IP
attributes [14] to perform clustering. This step
helps to avoid unnecessary inputs from entering
the next step of the dynamic programming
algorithm, which in-turn increases the efficiency
of the approach.

The figure above illustrates our approach. The
IPs of set1 are copied to stage 1 of dynamic
programming. The cost and area constraints are
input to stage 1 and the IPs whose cost or area
exceeds the constraint values are discarded. A
compatibility check is also performed at this
stage with the IPs of other sets. The VSIA-
defined attributes [14] are used to perform this
check
These ideas are summarized in the following
steps.

Step1: Normalize [15] the cost and area of each
IP of all the sets using the formula:
Cost = a*wcost*cost/c’ + b*warea*area/a’
where
Cost=dynamically weighted cost function
a=a weight on a scale of 10assigned by the
designer
wcost =cost constraint specified by the designer
cost=cost of the particular IP considered
c’=average cost of all IPs in the particular set

(Designer Specified Constraints)

B

A: initial configuration of set1 and
set2 satisfying the cost and area

constraints

A

Reduced
set1

Ranked
Configurations

From Stage (n-1)

Setn

Set2

Set3

Stage 1

Compatibility
Check

 Set1

Stage 2

Area Cost

Stage 3

Stage n

Rank

Fig.3 Proposed Approach
B: configurations which satisfy the static
system constraints of cost and area, each
containing n IPs

 6

b=a weight on a scale of 10 assigned by the
designer
warea =area constraint specified by the designer
area= area of the particular IP considered
a’=average area of all IPs in the particular set

Compare these normalized values of cost and
area with some threshold, which is a static value
in terms of cost and area. And neglect those IPs
which cannot be potential candidates in the
optimal configuration.
Step2: Here, we apply the dynamic
programming algorithm. This step is divided into
stages and the number of stages equals the
number of sets of IPs.
In stage1, we form an initial table consisting of
the cost and area of set1. After this, we check for
the compatibility of IPs of this set with the IPs of
other sets. For this, we use the inbuilt IP
attributes specified by the VSIA [14]. This helps
us to eliminate unwanted inputs from entering
the subsequent stages of the dynamic
programming algorithm.

In the subsequent stages, combinations of IPs
from sets are formed which satisfy the static
system constraints. The termination condition is
met when configurations have been formed with
each configuration containing one IP from each
of the sets.
Step3: Here, we rank the configurations formed
by calculating the normalized values of cost and
area obtained in the previous table by using the
formula:

(x-min)/ (max-min)*weight

where

 min=minimum of the list

 max=maximum of the list

 weight=value of cost or area, whichever the
designer wants to emphasize more.

4.3 Toy Example
We shall now take a toy example (in the form of
outputs of Level1) and carry it out all the way to
the production of outputs of level 2.1.

Table1:

Outputs of Level1: Sets of IPs

Set1 Set2 Set3
IP

Cost Area Cost Area Cost Area

1 7 2 2 7 3 6
2 5 3 1 4 4 8
3 3 5 3 2 3 2
4 6 5 1 3 1 4
5 2 4 5 2 5 3
6 1 3 4 3 6 3
7 5 8 6 4 4 6
8 6 3 5 2 5 8

 We have to make configurations that meet the
static system constraints of cost=$10 and
area=10 m2, where each configuration has 1
representation from each of the IP sets.

Step1: Normalization [15] is calculated as
follows: We shall express the cost and area of
each of the IPs by a dynamically weighted cost
function as follows:
Cost = a*wcost*cost/c’ + b*warea*area/a’
where

Cost=dynamically weighted cost function
a=a weight on a scale of 10assigned by the
designer
wcost =cost constraint specified by the designer
cost=cost of the particular IP considered
c’=average cost of all IPs in the particular set
b=a weight on a scale of 10 assigned by the
designer
warea =area constraint specified by the designer
area= area of the particular IP considered
a’=average area of all IPs in the particular set

 7

Table2: Normalization
IP

Cost of Set1 Cost of Set2 Cost of Set3

1 2.606 3.33 2.46
2 2.33 1.85 3.29
3 2.37 1.85 1.46
4 3.22 1.11 1.32
5 1.78 2.59 2.36
6 1.19 2.59 2.68
7 3.85 3.7 1.62
8 2.62 2.59 3.61

Comparing these normalized values of cost and
area with some threshold, which is a static value
in terms of cost and area, we neglect those IPs
that cannot be potential candidates in the optimal
configuration.
Thus, normalization helps us to evaluate the so-
called ‘Fitness’ or the weight of each of the IPs,
and these are compared with a threshold and the
unwanted IPs are removed, thus reducing the
search space, as shown in table below.
Step2: Application of Dynamic Programming
We have used the dynamic programming
algorithm on two constraints, namely
cost and area. Hence we shall revert
back to the cost and area values of each
of the IPs. Now, lets assume that the
total cost allocated to the designer =$10
and the total area allocated for the entire
system=10m2.
The conclusion at the end of stage1 is that all
these IPs can be potential members of the
optimal configuration.
After stage1, we intend to check for
compatibility of IPs. For example, if the designer
is looking for a 16-bit processor, then an IP of
32-bit word length from the class of memory will

not be compatible with the required search.
Hence it is discarded. In-fact using the IP
attributes, we can define some rules for checking
compatibility. Thus, we are making use of
implicit system constraints to discard unwanted
solutions from entering the subsequent steps of
dynamic programming.

Table3: Stage1 of Dynamic Programming
Algorithm

Set1 IP
 Cost Area
1 7 2
2 5 3
3 3 5
4 6 5
5 2 4

Stage2: The possible configurations of sets 1 and
2, which satisfy static system constraints, are
evaluated in this stage.
Stage3: The possible configurations of sets 1,2
and 3, which satisfy the system constraints, are:
Thus the optimal configurations that satisfy the
system constraints are: IP3_Set1, IP3_Set2,
IP3_Set3; IP3_Set1, IP2_Set2, IP3_Set3 and so
on.

Table4: Stage 3 of dynamic programming algorithm

Cost combinations Total cost Total area consumed
3,3,3 9 9
3,1,3 7 10
6,1,3 10 10
2,1,3 6 10
2,3,3 8 8
2,3,5 10 9
2,1,3 6 9
2,1,5 8 10

 8

Step3: Ranking of the configurations:

We use the following formula for ranking
the configurations obtained: (x-min)/ (max-
min)*weight

where

min=minimum of the list

 max=maximum of the list

 weight=value of cost or area, whichever the
designer wants to emphasize more.

Thus, the configurations are ranked as follows:
IP5_Set1, IP2_Set2, IP1_Set3; IP5_Set1,
IP2_Set2, IP3_Set3; IP3_Set1, IP2_Set2,
IP3_Set3 and so on.

5. Results
This section is divided into the following 2 sub-
sections: In 5.1, we discuss the experimental
results
5.1 Experimental Results
We shall compare the proposed approach with
the brute force algorithm in terms of number of
configurations explored. We used C++ as a
programming tool to verify our results. We took
a simple input with 3 sets of IPs with 5 IPs in
each. The system designer specifies the static
constraints of cost and area. The designer is
allocated a certain cost and area for his system.
Our algorithm has to form configurations of
these sets with each configuration having one
representation from each of the sets.

 Set1 Set2 Set3
 cost area cost area Cost area
IP1 7 2 2 7 3 6
IP2 5 4 1 4 4 8
IP3 3 5 3 2 3 6
IP4 6 5 1 6 1 4
IP5 2 4 5 5 5 3

For the above set of inputs, if the designer has the overall system constraints of 10 and 10 respectively for
cost and area, then the brute force algorithm output is as follows:
“The valid configurations are
 1. IP1_Set1, IP2_Set2 and IP4_Set3;
 2. IP2_Set1, IP3_Set2 and IP4_Set3;
 3. IP5_Set1, IP3_Set2 and IP4_Set3;
 4. IP5_Set1, IP3_Set2 and IP5_Set3.
Number of configurations generated in total: 125”
For the same set of inputs, the dynamic programming yields the same result as above, but the major change
is that “Number of configurations generated in total: 85”.
Now, if the designer specifies the overall system constraints of cost and area as 6 and 8 respectively, then,
no configuration formed from the above sets satisfy these constraints, yet there is a marked difference in
the total number of configurations generated: The brute force algorithm generates 125 configurations,
whereas the dynamic programming generates only 20 configurations.
The Brute Force Algorithm looked at 53 =125 configurations and compares the total cost and area of each
configuration with the total allocation and retains the configuration only if it is below the total allocation.
On the other hand, the dynamic algorithm does not look at all the configurations; it only looks at those
configurations that satisfy the static system constraints. Hence, the number of configurations looked at will
depend on the total allocation of cost and area for the system. Unlike the brute force algorithm, which
forms all possible configurations, dynamic algorithm forms only those, which satisfy the static system
constraints. In the above example, for the same values of cost and area constraint (10 and 10 respectively)
for both the algorithms, 85 configurations are looked at, thus, providing a 32% improvement. If the cost
and area allocation were reduced to lower values, say 6 and 8, for the same set of inputs, the number of
configurations explored remains 125 in the brute force, but is drastically reduced to 20 in the dynamic
programming algorithm, thus providing an improvement of 84%.
We have shown the experimental results for various scenarios in the form of graphical representations.
Figure 4 is a plot of number of configurations vs. number of sets of IPs, with each set having the same
number of IPs. Number of configurations explored is directly proportional to the time required for the
execution of the algorithm. As can be seen from the graph, fewer configurations are explored by the
dynamic programming algorithm when compared to the brute force algorithm. The next three scenarios
involve varying one of the constraints namely cost/area and varying both while calculating the number of

 9

configurations explored. In all the cases, the number of sets of IPs considered was 5 and each set had 5 IPs.
It is evident from the graphs that the number of configurations explored by the proposed approach is much
less compared to the brute force algorithm.

As is evident from the above graph, the brute force algorithm follows an exponential curve in terms of
number of configurations explored. As the number of sets of IPs increase, the number of configurations
explored by brute force increases. But in the case of dynamic programming algorithm, the number of
configurations explored depends on the total constraint allocation for the whole system. Nevertheless, the
number of configurations explored will be much less than the brute force algorithm.

Fig. 5 illustrates the plot of number of configurations explored for different values of area, with the cost
constraint being constant. The number of configurations explored by the brute force remains constant at
3125 irrespective of the area constraint.

 10

Fig.6 shows the graph of number of configurations explored for different values of cost, with the area
constraint being constant. As in the previous scenario, the number of configurations explored by brute force
algorithm remains constant at 3125 irrespective of the value of cost constraint.

Fig.7 illustrates a plot of number of configurations explored with varying values of cost and area
constraints. Again, the number of configurations explored by the brute force algorithm remains constant at
3125 whereas the proposed approach explores much less configurations.

5.2 Conclusions
In this paper, we have presented an approach, which performs an efficient search space reduction and forms
configurations from sets of IPs, which satisfy the static system constraints of cost and area. This was
possible by using ideas of fitness evaluation from the Strength Pareto Evolutionary Algorithm (SPEA), the
clustering algorithm and the dynamic programming algorithm. We also used the VSIA-defined attributes in
this approach in order to make the tool more intelligent. These attributes enable us to check for
compatibility of IPs and hence, help in reducing the search space. Thus, the proposed approach is very
efficient as it explores fewer configurations and hence execution time is also higher than the brute force
algorithm. The experimental results and the graphs clearly illustrate the efficiency of the proposed
approach. The graphs were constructed in various scenarios and all the plots show that the proposed
approach is superior to the conventional brute force approach in terms of the execution time, which is a
measure of the number of configurations explored. This approach can be adopted by IP-based embedded-
system designers to form optimal configurations which satisfy the static system constraints of cost and area.

References:

 11

[1] Abhishek Agarwal, Anuj Mallick, Suboh Suboh, Nikitas Alexandridis, Tarek El-Ghazawi (GWU): An
Open Source Intellectual Property Optimal Selection Tool (IPOST – Level1): The 2004 International
Multiconference in Computer Science and Engineering, 2004

[2] Abhishek Agarwal, Nikitas A Alexandridis, Tarek EI-Ghazawi, Zhengrong Yao, and Sean X. Wang
“An Open XML IP Search Portal Prototype”

[3] S.Mohanty, V.K.Prasanna and S.Neema J.Davis: “Rapid Design Space Exploration of Heterogeneous
Embedded Systems using Symbolic Search and Multi-Granular Simulation” Berlin, Germany Session:
Synthesis and Design Space Exploration, 2002

[4] E.Zitzler and L.thiele. Multiobjective evolutionary algorithms: A comparative case study and the
Strength Pareto approach. IEEE transactions on Evolutionary Computation, 4(3): 257-271, Nov.1999

[5] E.Zitzler, M.Laumanns, and L.Thiele. SPEA2: Improving the performance of the strength pareto
evolutionary algorithm. Technical Report TIK-Report 103, Computer Engineering and Communication
Networks Lab, Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092, May 2001

[6] "Specification and Design of Embedded Systems" by Gajski
 (chapter 6)

[7] Wei, Y.-C. Cheng, C.-K : “Ratio cut partitioning for hierarchical designs”: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Jul 1991
[8] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi : “Optimization by simulated annealing”: 13 May 1983,
Volume 220, Number 4598

[9] A tutorial on Dynamic Programming http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html

[10] Maurizio Palesi and Tony Givargis. “Multi-Objective Design Space Exploration Using Genetic
Algorithms”

[11] Multi-Objective Optimization using Evolutionary Algorithms by Kalyanmoy Deb

[12] Introduction to The Design and Analysis of Algorithms by Anany Levitin

[13] Tony .D Givargis, Frank Vahid: “Parameterized System Design

[14] Virtual Socket Interface Association, VC Attributes with formats, March 2001: http://www.vsi.org

[15] Jorg Henkel and Rolf Ernst “High-Level Estimation Techniques for usage in Hardware/Software Co-
Design”: Asia and South Pacific Automation Conference, pp. 353-360, Yokohama, Japan, February 1998.

[16] Tony Givargis, Frank Vahid, and Jorg Henkel, “System Level Exploration for Pareto-Optimal
Configurations in Parameterized System-on-a-Chip” December 2002 IEEE. IEEE transactions on Very
Large Scale Integration (VLSI) systems, vol. 10, no. 4, August 2002
[17] J.Heitkotter and D.Beasley. The hitch-hiker’s guide to evolutionary computation.

 http://surf.de.uu.net/encore/www/,Apr. 12 2001

