Supports for Processing Media Data in Embedded Processors
Geun-Chul Park1, Sung-Soo Ahn2, Hyun-Gyu Kim1,2, and Hyeong-Cheol Oh3
1 R&D Center, Advanced Digital Chips Inc., Seoul, Korea

2 Department of Information Engineering, Graduate School, Korea University, Korea
3 Department of Information Engineering, Korea University at Seo-Chang, Korea

ohyeong@korea.ac.kr

Introduction
 Media data processing is one of the most important tasks of the embedded sytstems. However, many embedded processors are ill-equipped to process media data, since the resources are more limited for them than for other processors. The media data often take the form of data streams, in which case data are temporarily stored in the memory, continuously read into the processor, and used only a few times. Embedded processors often have fewer instruction bits to represent the immediate value fields for addressing data memory [1]. Furthermore, many embedded processors cannot afford expensive address generators. So, it is common for an embedded processor to waste several instructions per access when it accesses the data memory in some complicated address patterns.

Embedded processors also have fewer instruction bits to represent register designators [1] and can designate less general-purpose registers (GPRs). Some operations, however, need more source operands than the provided GPRs and slow the processor down by spilling the registers frequently.

This paper presents how we extend the operand extension scheme used in a compressed instruction set architecture (ISA), called EISC [2], and the idea of the shadow register file [3], to enhance the media processing capability of the embedded processors based on the EISC ISA. Even though we consider the EISC as the target ISA in this paper, the idea is not restricted to this specific ISA.

The EISC

The EISC instruction set architecture (ISA) is one of the ISAs that use compressed coding (See [1,2] and the references therein). It adopts a 16-bit fixed-length instruction coding. The EISC differs from other compressed ISAs in that it executes the 16-bit instructions as they are, instead of decoding them into wider instructions before execution. In order to define a long operand, the EISC ISA adopts a special instruction, called leri. One leri instruction can define an immediate value of size up to 14 bits. Several leri instructions can be combined with one related instruction to provide a long immediate operand for the operation of the related instruction. Since the leri instruction is an independent instruction, it may be placed properly by the compiler and then prefetched and processed by the hardware so that the overhead involved can be minimized [4].
Like many other embedded processors, the EISC has sixteen GPRs. Even if more chip area is allowed, the EISC cannot support more GPRs due to the reason mentioned above.

Complicated Data Address Patterns

The most popular operations in DSP, such as multiply and multiply-accumulate (MAC) operations, require at least two memory addresses (of the source operands). It is hard for common fixed-length instruction sets to support two memory addresses efficiently, unless some restrictions are placed on the data addressing patterns. For some special address patterns [5], simple address generators can be applied. For other more complicated addressing patterns, such as the one found in the inverse modified discrete cosine transform (IMDCT) routine of the Mpeg Audio Decoder (MAD) library in MiBench [6], we need more complex and expensive hardware address generators. When the resources are limited so that we cannot afford proper address generators, we load the data into GPRs and then perform the operation; we execute multiple instructions per an operation; or we extend an instruction to several words. We chose to use an efficient hybrid of the last two approaches in a fashion similar to [4].

We use the leri instruction of the EISC ISA to define the required long addresses. Before the related instruction is processed, the leri instructions fill a special register, called ER. Figure 1 shows an example in which a 28-bit ER is used. In Figure 1, two source operands are addressed by combining the contents of ER with the two base addresses in the GPRs designated by the fields (REG. 1 and REG. 2) of the related instruction. The register ER can be filled by two leri instructions.

We assume two 14-bit displacements here but can easily extend the idea to any number of displacements of any sizes since the number of the leri instructions depends only on the size of ER. As mentioned before, it is possible for the compiler and hardware to process the leri instructions as in [4] so that the overheads involved can be minimized.
Shortage of GPRs
Many embedded processors provide sixteen GPRs. However, some popular DSP routines, including the discrete cosine transform (DCT) or IMDCT routines, use more than sixteen variables simultaneously. A general approach for resolving this problem of shortage of GPRs is to spill the contents of GPRs into the memory. The media data often take the form of data streams, in which case they are temporarily stored in the memory, continuously read into the processor, and used only a few times. Therefore, media applications running on an embedded processor often suffer from significant performance losses due to the process of frequent register spilling.

We propose to increase the effective number of GPRs by adopting the idea of shadow register which was originally proposed for reducing context switch latency [3]. Figure 2 shows the block diagram of a register file with one shadow register file. We select the active register file by setting or resetting a flag. We use one shadow register file in this paper, but can add more if needed.

Evaluations and Conclusions
In order to evaluate the performance of the proposed schemes, we designed four prototype processors: wdsp, wdsp-e, base, and shadow. The processor base was an implementation of the non-DSP part of the EISC ISA and had a microarchitecture that was similar to the one in [7]. No processor was equipped with any address generator. Table 1 summarizes the specifications of the processors.
As the benchmark that had a rather complex data address pattern and used more than 16 variables for calculating each output value, we chose the IMDCT routine and the windowing routine of the MAD library in MiBench [6]. A perfect (zero-wait) external memory was assumed. We also synthesized the designed processors using a 0.35(m CMOS standard cell library, to evaluate the hardware costs of the proposed schemes. The results are summarized in Table 2. The implementations of the DSP ISA included the DSP memories, each of which occupied about 144202 equivalent gates.

While the code for wdsp had several instructions per each multiply or MAC operation for preparing the operands in GPRs, the code for wdsp-e included many leri instructions. However, the overhead for executing the leri instructions was minimized by using the scheme explained in [4]. In result, we found that the proposed addressing scheme reduced the execution time by about 30%, even though we did not observe any significant change in the (static) code size. On the other hand, the proposed scheme implemented in wdsp-e costed only 0.5% increase of the total area--another crucial concern in the embedded systems.
With more registers, shadow occupied about 16% more area than base but reduced the execution time by about 18%. (For the DCT and IDCT routines which required more GPRs than the code used in Table 2 did, about 28% reduction was observed.)
Both schemes had little effect on the critical path delays in our designs. Since the results were obtained under the ideal condition of memory device, we expect more significant reductions in the execution time under more practical conditions. From these observations, we can conclude that the proposed schemes can be the promising solutions especially when the resources are limited. The shadow register scheme can be a good solution where the cost of DSP memory is prohibitive.
Acknowledgement
Authors wish to acknowledge the financial support of ADChips Inc., Korea and the CAD tool support of IDEC (IC Design Education Center), Korea.

Reference
1. C. Lefurgy, P. Bird, I. Chen, and T. Mudge, "Improving Code Density using Compression Techniques," MICRO-30, pp.194`203, Dec. 1997
2. H. Lee, P. Becket, and B. Appelbe, “High-Performance Extendable Instruction Set Computing,” in Proc. the 6th Australasian Computer Systems Architecture Conf., Queensland, 2001, pp. 89–94.
3. J. Jayaraj, P.L. Rajendran, and T. Thirumoolam, “Shadow Register File Architecture: A Mechanism to Reduce Context Switch Latency,” Int. Conf. on High Perf. Comp., Poster Presentation, 2002.
4. K.-Y. Cho, J.-Y. Lim, G.-T. Lee, H.-C. Oh, H.-G. Kim, B.-G. Min, and H. Lee, “Extended Instruction Word Folding Apparatus,” U.S. Pat. No. 6631459, Oct. 7. 2003.
5. P. Lapsley, J. Bier, A. Shoham, and E.A. Lee, DSP Processor Fundamentals, New York: IEEE Press, 1997.
6. M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown, “MiBench: a free, commercially representative embedded benchmark suite,” in Proc. IEEE WWC-4, Texas, 2001, pp. 3–14.

7. H.-G. Kim, D.-Y. Jung, H.-S. Jung, Y.-M. Choi, J.-S. Han, B.-G. Min, and H.-C. Oh, "AE32000B: A Fully Synthesizable 32-bit embedded microprocessor core," in Proc. of Asia Pacific System on a chip (AP-SoC 2002) Conference, Seoul, 2002, pp. 71–75.
[image: image1.emf]From leri

13

 E R

0

27 14

GPR 1

GPR 2

15

REG. 1

8

7 0

OP -CODE REG. 2

X MEMORY

WORD

Y MEMORY

WORD

[image: image2.emf]

A

B

U

S

B

B

U

S

SHADOW

REGISTER

FILE

FLAG

BITS

REGISTER

FILE

Table 2. Evaluation Results (IMDCT and windowing)

�
Code size

[bytes]�
Exec. time

[cycles]�
Area

[equi.gates]�
Critical path delay [units]�
�
wdsp�
1970�
868�
215125 1�
25.52�
�
wdsp-e�
1976�
608�
216303 1�
25.53�
�
base�
2864�
941�
46773�
18.05�
�
shadow�
2723�
792�
54567�
18.05�
�
1. including the DSP memory (about 144202 [equi. gates])

Table 1. Specifications of the Prototype Processors

�
Specification�
�
wdsp�
- DSP ISA of EISC

- 16 32-bit GPRs

- DSP memory�
�
wdsp-e�
- wdsp + Proposed addressing scheme (Fig.1)

- 14-bit ER�
�
base�
- Non-DSP ISA of EISC

- 16 32-bit GPRs

- No DSP memory�
�
Shadow�
- base + 16 32-bit shadow registers (Fig. 2)�
�

� EMBED Visio.Drawing.11 ���

Figure 1. The proposed memory addressing scheme.

� EMBED Visio.Drawing.11 ���

Figure 2. A register file with one shadow register file.

_1158404609.vsd
�

GPR 1

GPR 2

15

REG. 1

8

7

0

OP - CODE

REG. 2

X MEMORY

WORD

Y MEMORY

WORD

From leri

13

 E R

0

27

14

_1148885950.vsd
FLAG
BITS

SHADOW REGISTER
FILE

REGISTER
FILE

 ABUS

 BBUS

