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Abstract 
 
Grid computing has become a popular way of providing high performance for data intensive scientific 

applications.  Many interesting and challenging problems related to data intensive computing have been 
solved recently using various grid services.  However, reliable and scalable software architecture for 
solving general-purpose distributed data intensive problems is missing.  We developed a software 
architecture that combines existing grid services with our state-of-the-art grid scheduler, Sphinx. We 
deployed our prototype across the USCMS Grid3 [Grid3].  It is in the primary stages of exhibiting 
interactive remote data access, demonstrating interactive workflow generation and collaborative data 
analysis using virtual data and data provenance, as well as showing non-trivial examples of policy based 
scheduling of requests in a resource constrained grid environment.  Here we focus on the design of 
infrastructure that handles tasks from the generation of abstract workflows to analysis of results. We 
present our experiments in scheduling various workflows using different algorithms in Sphinx.  
 
1. Introduction 

 
The Compact Muon Solenoid (CMS) detector [CMS04] is a multi-purpose, high-energy physics 

experiment at the Large Hadron Collider (LHC) that is located at the European Centre for Particle Physics 
(CERN) near Geneva, Switzerland.  When it is completed in 2007, it will record data at a rate of hundreds 
of mega-bytes per second leading to data stores in the tens of peta-bytes by 2010 and exa-bytes by 2015.  
Event samples in such massive data stores will need to be rapidly accessed and analyzed by globally 
dispersed scientists in hundreds of collaborative teams.    

To support this need, storage and computational resources are currently being hierarchically distributed 
across a global LHC Computational Grid (LCG) [LCG04].  Nevertheless, efficient scientific analysis of 
large datasets will require that access to those distributed resources should often occur in un-structured and 
interactive (but controlled) ways and point towards a distributed services architecture [Newman03].  Such a 
system requires that request-response latencies should be low, that finely as well as coarsely grained 
chaotic access to distributed datasets be possible, and that tools supporting collaborative work within a 
geographically distributed environment be widely available.  To date, activities within the grid research 
communities [Globus04, Condor04, GriPhyN04, EDU04] have provided many key technologies supporting 
generic access to distributed grid resources.  However, they have so far tended to focus on pre-planned 
workflows that are executed in a batch-oriented fashion and where data is accessed in pre-determined ways 
with less consideration given to interactive capabilities, chaotic access to data, or quality of service in a 
resource constrained system.   

Here we report on the implementation of a prototype of distributed high-level services supporting grid-
enable data analysis within the LHC physics community, and begin to investigate the associated complex 
behavior of such an end-to-end system.  In particular, the prototype integrates several services for the 
distributed data analysis.  The services include a user interface for data analysis, a uniform web-services 
interface among grid applications, a virtual data service, grid resource management and scheduling, a grid 
weather monitoring, and a workflow and replica management.   

For test purposes, the prototype is deployed across Grid3 and is in the stages of exhibiting interactive 
remote data access, demonstrating interactive workflow generation and collaborative data analysis using 
virtual data and data provenance, as well as showing non-trivial examples of policy based scheduling of 
requests in a resource constrained grid environment. 

In section 2, we describe the architecture of the prototype, and each service component in the system is 
also discussed in the section.  In section 3 we present the results that we obtained from experiments of the 
prototype on a testbed. We conclude the work in section 4. 
 



2. Architecture 
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Figure 1: Web-based data analysis system architecture.  The system consists of several grid-based 
services that make distributed data analysis possible.  Each of the services is discussed in section 2.2.   

 
A general architecture of the proposed distributed data analysis system is shown in Figure 1.  The 

system supports a graphical user interface (GUI) through which a user can interact with the system to 
register, generate and explore data.  The typical data analysis framework, ROOT provides appropriate GUI 
and event handling functionalities.  Several existing or being developed services incorporates to accomplish 
the data analysis service.  Each service is connected to the others using Clarens that is a web-based 
communication protocol with grid enabled security infrastructure.   

A user starts data analysis by registering new virtual data into the data analysis system.  Chimera virtual 
data system keeps description and generation procedure of the registered data.  Users can send requests to 
generate the virtual data as well as to review the data information in Chimera. After receiving data 
generation request the virtual data service interacts with a grid resource scheduling service. The scheduling 
service allocates grid resources to the request. Chimera passes generation procedure of the requested data in 
the form of abstract Directed Acyclic Graph (DAG). The abstract DAG describes the procedure by 
specifying the dependency of input and output data among subtasks. Only logical file names are given to 
the data since their physical locations are not decided yet.   

A grid resource scheduling service makes resource allocation decision to data generation request from a 
user.  Specifically, the service decides physical locations and paths for logical file names in an abstract 
DAG passed from Chimera virtual data system.  The data analysis system uses Sphinx scheduling 
middleware to perform the service.  Sphinx works closely with the grid resource monitoring service 
MonALISA and replica location service RLS to make the scheduling efficient in a dynamically changed 
grid environment. 



Once resource allocation decision for data generation is made, a grid enabled execution service submits 
tasks to resources in a grid test bed.  The execution service observes job dependency in a DAG when it 
makes the submission.  After receiving the execution requests, resources in a grid test bed execute the tasks 
based on their local scheduling decision.  The data analysis system uses Virtual Data Toolkit (VDT) client 
and server packages to accomplish the architecture. 

After finishing the data generation physical file locations and paths of generated data are registered into 
a replica location service (RLS).  A user submits a query for the data locations to RLS, and finally she/he 
can explore the data.  ROOT Clarens client module supports efficient methods for connecting to remote 
servers and analyzing data on the sites. 
    
2.1 Services 

 
We describe service components that are used to provide distributed system for grid enabling high-

energy physics data analysis in this subsection.  Each of the services is a key component making the 
analysis possible.  

 
ROOT: An object-oriented data analysis framework 

 
ROOT [Rademakers98] system provides a set of object-oriented frameworks to analyze large amount of 

data.  ROOT manages hierarchically structured framework architecture.  Each of the frameworks supports 
different services for data analysis.  ROOT graphical user interface classes and event generating and 
handling classes are used to generate interfaces through which user can interact with the distributed 
services.  ROOT is also used to analyze remotely located data with the Clarens client functionalities. 

In the service demonstration we use ROOT graphical user interface to analysis remotely located data 
with the Clarens client functionality described in the next section.  The interface allows scientists making 
queries to register new virtual data derivation into a virtual data catalog, to submit requests generating 
physical data files and to explore remotely located data files for the analysis purpose. 

In Table 1 we show the various services that work in the background to provide the functions in the 
graphical user interface.  We discuss each of the services in more detail from the next section. 
 

Functionalities Services 
Registering virtual data derivation Chimera virtual data system 
   
Generating physical data 

Sphinx grid scheduling service 
MonALISA grid resource monitoring service 
VDT grid resource management service 

Exploring remote data files  ROOT data analysis service 
Clarens grid-enabled web service 

Table 1: Distributed data analysis functions and services 

 
Clarens: Grid-enabled web services framework 
 

The communication backbone of the distributed service demonstration is Clarens web services 
framework [Clarens].  Clarens provides a host of grid computing services. Clarens client sends request to 
the host via the lightweight XML-RPC mechanism using Grid Security Infrastructure (GSI) for 
authentication [Sandholm].   
Clarens supports secure communication between service components in the distributed service.  The 
modules exchange requests and data through Clarens client and server modules.  Clarens provides a client 
module for ROOT data analysis application.  The ROOT client module supports an infrastructure to log 
into a remote Clarens server and execute RPC calls for remote data analysis.  Other service components 
also use Clarens to exchange requests for data registration, generation and exploration.   Clarens service 
modules are implemented in Java Servlets.  
 



Chimera virtual data system 
 
Chimera [Foster03] creates and manages a virtual data catalog that represents data derivation procedures 

and derived data.  The virtual data catalog contains description of a set of virtual data (“transformations”) 
and track all the data produced by data generation (“derivations”).  Chimera produces a “recipe” to generate 
a logical file in the form of an abstract program execution graph. 

Our distributed services use Chimera to register data derivation procedures into virtual data catalog, and 
to generate abstract execution graph for data generation corresponding to user request.  Chimera, as a 
virtual data server, interacts with user in a client side through Clarens communication service.  
 
Sphinx: Grid scheduling service 

 
Sphinx [In03] is a novel grid-scheduling framework for planning requests of high-end computational, 

storage and network resources that are dynamic with respect to activity and availability.  Sphinx 
administrates grid resource usage policies, and schedules complex and data intensive scientific applications 
providing a specified quality of service. 

In the distributed service demonstration an abstract execution graph generated by Chimera virtual data 
system is passed to Sphinx scheduling system.  Sphinx makes resource allocation decision for the workflow 
across the grid test-bed.  The decision is based on policy and grid weather information as monitored by a 
grid monitoring system.   
 
MonALISA: Grid resource monitoring service 
 

MonALISA [Newman03] is a distributed monitoring service system using JINI/JAVA and 
WSDL/SOAP technologies.  It provides monitoring information from large and distributed systems to a set 
of loosely coupled “higher level services” in a flexible, self describing way. 

MonALISA provides Sphinx scheduling service with critical grid resource status information in the 
service demonstration.  The information is specific to resource properties such as CPU, bandwidth, queue 
lengths, storage, etc.  The scheduling system can make resource allocation decision based on the 
monitoring information and resource usage policy information in a dynamically changed grid weather 
environment. 

The MonALISA monitoring service is deployed at each of the participating sites. A MonALISA 
repository is maintained at the grid-scheduling site, which had the snapshot of the required parameters 
(monitored resources). The scheduling engine queries this repository to get the latest grid weather 
(monitored information) which plays an important role in the scheduling decision-making process.  
MonALISA’s web client is also used as a ‘window’ to the grid to view the load distribution of the jobs 
across the grid sites. It works in conjunction with the tracker module of SPHINX to display statistics such 
as site-wise and user-wise job distribution. SPHINX interacts with MonALISA by accessing MonALISA’s 
database providing monitored parameters 
 
Virtual data toolkit (VDT): Grid resource management service 
 

Virtual data toolkit [VDT] is a set of software that supports the needs of the research groups and 
experiments.  It consists of server and client, and each part includes Condor [Thain03], Globus [Foster02], 
and Chimera and other software to submit requests to resource grid sites or to provide resource power to 
serve remote requests. 

Based on the resource allocation decision made by Sphinx grid resource scheduling service VDT client 
submits requests to remote grid resources.  The remote resources have VDT server installed to execute 
incoming requests. In the distributed service demonstration several grid resource across USCMS grid test-
bed are used as VDT servers, and two VDT clients are available to make request submission based on the 
resource allocation decision.   

 



3. Experimental Results  
 
3.1 Experimental setup  
 

In the experiments presented here, we use four grid sites from the US-CMS Grid Test-bed.  A job is 
submitted to a site gatekeeper, and each site supports a scheduler (Condor) for local load balancing of the 
compute cluster within that site. A canonical DAG is prepared using the Chimera Virtual Data Language 
consisting of two execution nodes in which each node requires three external input files and generates one 
output file.  A workflow of 120 such DAGs is stored in the Chimera Virtual Data Catalog and then 
submitted to the SPHINX scheduling server for each experiment.  
 
3.2 Benchmark planning algorithms  

 
In order to demonstrate the functionality of workflow management, a set of simple, benchmark planning 

and replication algorithms has been implemented into the scheduling framework.  Several strategies 
currently exist in the Grid community and one may categorize them according to:  matchmaking [Ramen 
98], knowledge-based approach utilizing AI technologies [Blythe 03], data availability based strategies 
[Ranganathan 02] and economy based file access optimization [Carman 02].  Indeed, many of these 
strategies have been implemented in various Grid projects.  The tests presented here do not yet attempt to 
implement such strategies, but rather attempt to show that SPHINX is able to provide researchers with an 
environment in which one may plug-in different strategy modules and compare the performance of existing 
and future scheduling strategies.   

As benchmark strategies, we choose to select job execution sites according to the following two 
algorithms.  The first is a simple round robin method, which is based on a First-In-First-Out (FIFO) 
strategy, and does not exploit the benefits of just-in-time scheduling.  Such a strategy takes advantage of 
possible parallelism provided by multi-processor computing across different grid sites, but does not take 
advantage of important information such as grid topology, job tracking, grid weather, or data replication 
services.  As a second strategy, we augment the round robin strategy with upper limits on the number of 
jobs that are scheduled at an execution site at any particular time.  The upper limits at different sites are set 
according to the number of available compute processors available at each site.  Together, the upper limits 
incorporate system-tuning information based on the topology of the grid and therefore act as a throttle for 
work submission, allowing for a richer, non-trivial use of just-in-time scheduling. 
 
3.3 Observation 
 

Job Distribution on Grid Sites
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  Figure 3: Job distribution and workflow execution time on grid sites according to the planning 
algorithms 

 



Even though the number of assigned jobs on IGT is increased with large number, the workflow 
execution time on the site keeps stable.  It means that IGT is capable to accept the addition al jobs without 
overload.  On the other hand, the workflow execution time on UCSD is decreased dramatically with the 
decreased number of assigned jobs.  It explains that extra overload on UCSD are taken by IGT leading to 
evenly distributed workload on the four sites.  As a result, the workflow execution times are similar closely 
on all the sites with the upper limit-planning algorithm.  By considering workload information on each grid 
site a planner can make more efficient planning of jobs to the grid sites.  
 

Figure 4 shows planning and executing time of submitted jobs.  From the first graph, we can detect that 
child job queuing and planning takes large amount of total DAG execution time on the both planning 
algorithms.  The child job queuing and planning depend mostly on the parent job execution according to 
data dependency.  A smart planning algorithm can reduce the queuing time by assigning the parent job to a 
computing resource efficiently resulting to reducing total DAG execution time.  For example from our 
experiment, the upper limit method provides less queuing time than the round robin does.  We can also 
detect that the ratio of the queuing and planning time of the child job over DAG execution time is greater 
with the upper limit method than with the round robin.  We understand that the case happens because the 
job planning time on SPHINX is not affected much by the planning algorithms even though the queuing 
time and the execution time is changed according to the algorithms.  From the first and second figures, the 
parent job planning time is consistent, while job execution time is changed a lot according to the planning 
algorithms.   
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Figure 4: Average DAG and Jobs planning and executing time, and the longest planning and 
executing time 

Comparing the longest planning and executing time with the average time for the both algorithms, we 
realize that time variation with the upper limit is much smaller than with the round robin.  As we can find 
from Figure 3, with the round robin, UCSD is under the high overload, while IGT is not.  From these facts, 
we can see that most jobs assigned to UCSD take the longest queuing and executing time, while jobs in 
IGT take short time, and it makes the large variation between the average and longest time.   With the 
upper limit, the planner distributes jobs to the sites evenly according to the computing capabilities.  It 
makes job planning and executing time on the entire sites consistent, and the variance becomes small.  
 
 
4. Conclusion and Future Directions 
 
 Using the distributed services architecture provides the advantage of knowledge-based decision 
making. It alleviates the grid-user of scheduling the jobs himself on the grid. Job tracking and re-
submission facilities add to the system fault-tolerance at a job-level. Analysis of results is expedited with 
easy remote file access. 



 
 More experiments are in progress which compares the different scheduling strategies and the 
effectiveness of monitoring and feedback information. We are also in the process of verification of 
adherence by Sphinx to policies and QoS requirements put down by the users. 
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