

A Distributed Service Architecture for end-to-end Data Intensive Analysis

Jang-uk In, Laukik Chitnis, Richard Cavanaugh, Pradeep Padala,

Sanjay Ranka, Mandar Kulkarni, Paul Avery
University of Florida

{juin, lchitnis, ppadala, ranka, md2}@cise.ufl.edu, {cavanaug, avery}@phys.ufl.edu

Abstract

Grid computing has become a popular way of providing high performance for data intensive scientific

applications. Many interesting and challenging problems related to data intensive computing have been
solved recently using various grid services. However, reliable and scalable software architecture for
solving general-purpose distributed data intensive problems is missing. We developed a software
architecture that combines existing grid services with our state-of-the-art grid scheduler, Sphinx. We
deployed our prototype across the USCMS Grid3 [Grid3]. It is in the primary stages of exhibiting
interactive remote data access, demonstrating interactive workflow generation and collaborative data
analysis using virtual data and data provenance, as well as showing non-trivial examples of policy based
scheduling of requests in a resource constrained grid environment. Here we focus on the design of
infrastructure that handles tasks from the generation of abstract workflows to analysis of results. We
present our experiments in scheduling various workflows using different algorithms in Sphinx.

1. Introduction

The Compact Muon Solenoid (CMS) detector [CMS04] is a multi-purpose, high-energy physics

experiment at the Large Hadron Collider (LHC) that is located at the European Centre for Particle Physics
(CERN) near Geneva, Switzerland. When it is completed in 2007, it will record data at a rate of hundreds
of mega-bytes per second leading to data stores in the tens of peta-bytes by 2010 and exa-bytes by 2015.
Event samples in such massive data stores will need to be rapidly accessed and analyzed by globally
dispersed scientists in hundreds of collaborative teams.

To support this need, storage and computational resources are currently being hierarchically distributed
across a global LHC Computational Grid (LCG) [LCG04]. Nevertheless, efficient scientific analysis of
large datasets will require that access to those distributed resources should often occur in un-structured and
interactive (but controlled) ways and point towards a distributed services architecture [Newman03]. Such a
system requires that request-response latencies should be low, that finely as well as coarsely grained
chaotic access to distributed datasets be possible, and that tools supporting collaborative work within a
geographically distributed environment be widely available. To date, activities within the grid research
communities [Globus04, Condor04, GriPhyN04, EDU04] have provided many key technologies supporting
generic access to distributed grid resources. However, they have so far tended to focus on pre-planned
workflows that are executed in a batch-oriented fashion and where data is accessed in pre-determined ways
with less consideration given to interactive capabilities, chaotic access to data, or quality of service in a
resource constrained system.

Here we report on the implementation of a prototype of distributed high-level services supporting grid-
enable data analysis within the LHC physics community, and begin to investigate the associated complex
behavior of such an end-to-end system. In particular, the prototype integrates several services for the
distributed data analysis. The services include a user interface for data analysis, a uniform web-services
interface among grid applications, a virtual data service, grid resource management and scheduling, a grid
weather monitoring, and a workflow and replica management.

For test purposes, the prototype is deployed across Grid3 and is in the stages of exhibiting interactive
remote data access, demonstrating interactive workflow generation and collaborative data analysis using
virtual data and data provenance, as well as showing non-trivial examples of policy based scheduling of
requests in a resource constrained grid environment.

In section 2, we describe the architecture of the prototype, and each service component in the system is
also discussed in the section. In section 3 we present the results that we obtained from experiments of the
prototype on a testbed. We conclude the work in section 4.

2. Architecture

Distributed Services for Grid
Enabled Data Analysis

Distributed Services for Grid
Enabled Data Analysis

Sphinx

Scheduling
Service Fermilab

File
Service

VDT Resource
Service

Caltech

File
Service

VDT Resource
Service

RLS

Replica
Location
Service

Sphinx/VDT

Execution
Service

MonALISA

Monitoring
Service

ROOT

Data Analysis
Client

Chimera

Virtual Data
Service

Iowa

File
Service

VDT Resource
Service

Florida

File
Service

VDT Resource
Service

Clarens

C
la

re
ns

Cl
ar

en
s Globus

Globus

G
rid

FT
P

C
larens

Globus

MonALISA

Figure 1: Web-based data analysis system architecture. The system consists of several grid-based
services that make distributed data analysis possible. Each of the services is discussed in section 2.2.

A general architecture of the proposed distributed data analysis system is shown in Figure 1. The

system supports a graphical user interface (GUI) through which a user can interact with the system to
register, generate and explore data. The typical data analysis framework, ROOT provides appropriate GUI
and event handling functionalities. Several existing or being developed services incorporates to accomplish
the data analysis service. Each service is connected to the others using Clarens that is a web-based
communication protocol with grid enabled security infrastructure.

A user starts data analysis by registering new virtual data into the data analysis system. Chimera virtual
data system keeps description and generation procedure of the registered data. Users can send requests to
generate the virtual data as well as to review the data information in Chimera. After receiving data
generation request the virtual data service interacts with a grid resource scheduling service. The scheduling
service allocates grid resources to the request. Chimera passes generation procedure of the requested data in
the form of abstract Directed Acyclic Graph (DAG). The abstract DAG describes the procedure by
specifying the dependency of input and output data among subtasks. Only logical file names are given to
the data since their physical locations are not decided yet.

A grid resource scheduling service makes resource allocation decision to data generation request from a
user. Specifically, the service decides physical locations and paths for logical file names in an abstract
DAG passed from Chimera virtual data system. The data analysis system uses Sphinx scheduling
middleware to perform the service. Sphinx works closely with the grid resource monitoring service
MonALISA and replica location service RLS to make the scheduling efficient in a dynamically changed
grid environment.

Once resource allocation decision for data generation is made, a grid enabled execution service submits
tasks to resources in a grid test bed. The execution service observes job dependency in a DAG when it
makes the submission. After receiving the execution requests, resources in a grid test bed execute the tasks
based on their local scheduling decision. The data analysis system uses Virtual Data Toolkit (VDT) client
and server packages to accomplish the architecture.

After finishing the data generation physical file locations and paths of generated data are registered into
a replica location service (RLS). A user submits a query for the data locations to RLS, and finally she/he
can explore the data. ROOT Clarens client module supports efficient methods for connecting to remote
servers and analyzing data on the sites.

2.1 Services

We describe service components that are used to provide distributed system for grid enabling high-

energy physics data analysis in this subsection. Each of the services is a key component making the
analysis possible.

ROOT: An object-oriented data analysis framework

ROOT [Rademakers98] system provides a set of object-oriented frameworks to analyze large amount of

data. ROOT manages hierarchically structured framework architecture. Each of the frameworks supports
different services for data analysis. ROOT graphical user interface classes and event generating and
handling classes are used to generate interfaces through which user can interact with the distributed
services. ROOT is also used to analyze remotely located data with the Clarens client functionalities.

In the service demonstration we use ROOT graphical user interface to analysis remotely located data
with the Clarens client functionality described in the next section. The interface allows scientists making
queries to register new virtual data derivation into a virtual data catalog, to submit requests generating
physical data files and to explore remotely located data files for the analysis purpose.

In Table 1 we show the various services that work in the background to provide the functions in the
graphical user interface. We discuss each of the services in more detail from the next section.

Functionalities Services
Registering virtual data derivation Chimera virtual data system

Generating physical data

Sphinx grid scheduling service
MonALISA grid resource monitoring service
VDT grid resource management service

Exploring remote data files ROOT data analysis service
Clarens grid-enabled web service

Table 1: Distributed data analysis functions and services

Clarens: Grid-enabled web services framework

The communication backbone of the distributed service demonstration is Clarens web services
framework [Clarens]. Clarens provides a host of grid computing services. Clarens client sends request to
the host via the lightweight XML-RPC mechanism using Grid Security Infrastructure (GSI) for
authentication [Sandholm].
Clarens supports secure communication between service components in the distributed service. The
modules exchange requests and data through Clarens client and server modules. Clarens provides a client
module for ROOT data analysis application. The ROOT client module supports an infrastructure to log
into a remote Clarens server and execute RPC calls for remote data analysis. Other service components
also use Clarens to exchange requests for data registration, generation and exploration. Clarens service
modules are implemented in Java Servlets.

Chimera virtual data system

Chimera [Foster03] creates and manages a virtual data catalog that represents data derivation procedures

and derived data. The virtual data catalog contains description of a set of virtual data (“transformations”)
and track all the data produced by data generation (“derivations”). Chimera produces a “recipe” to generate
a logical file in the form of an abstract program execution graph.

Our distributed services use Chimera to register data derivation procedures into virtual data catalog, and
to generate abstract execution graph for data generation corresponding to user request. Chimera, as a
virtual data server, interacts with user in a client side through Clarens communication service.

Sphinx: Grid scheduling service

Sphinx [In03] is a novel grid-scheduling framework for planning requests of high-end computational,

storage and network resources that are dynamic with respect to activity and availability. Sphinx
administrates grid resource usage policies, and schedules complex and data intensive scientific applications
providing a specified quality of service.

In the distributed service demonstration an abstract execution graph generated by Chimera virtual data
system is passed to Sphinx scheduling system. Sphinx makes resource allocation decision for the workflow
across the grid test-bed. The decision is based on policy and grid weather information as monitored by a
grid monitoring system.

MonALISA: Grid resource monitoring service

MonALISA [Newman03] is a distributed monitoring service system using JINI/JAVA and
WSDL/SOAP technologies. It provides monitoring information from large and distributed systems to a set
of loosely coupled “higher level services” in a flexible, self describing way.

MonALISA provides Sphinx scheduling service with critical grid resource status information in the
service demonstration. The information is specific to resource properties such as CPU, bandwidth, queue
lengths, storage, etc. The scheduling system can make resource allocation decision based on the
monitoring information and resource usage policy information in a dynamically changed grid weather
environment.

The MonALISA monitoring service is deployed at each of the participating sites. A MonALISA
repository is maintained at the grid-scheduling site, which had the snapshot of the required parameters
(monitored resources). The scheduling engine queries this repository to get the latest grid weather
(monitored information) which plays an important role in the scheduling decision-making process.
MonALISA’s web client is also used as a ‘window’ to the grid to view the load distribution of the jobs
across the grid sites. It works in conjunction with the tracker module of SPHINX to display statistics such
as site-wise and user-wise job distribution. SPHINX interacts with MonALISA by accessing MonALISA’s
database providing monitored parameters

Virtual data toolkit (VDT): Grid resource management service

Virtual data toolkit [VDT] is a set of software that supports the needs of the research groups and
experiments. It consists of server and client, and each part includes Condor [Thain03], Globus [Foster02],
and Chimera and other software to submit requests to resource grid sites or to provide resource power to
serve remote requests.

Based on the resource allocation decision made by Sphinx grid resource scheduling service VDT client
submits requests to remote grid resources. The remote resources have VDT server installed to execute
incoming requests. In the distributed service demonstration several grid resource across USCMS grid test-
bed are used as VDT servers, and two VDT clients are available to make request submission based on the
resource allocation decision.

3. Experimental Results

3.1 Experimental setup

In the experiments presented here, we use four grid sites from the US-CMS Grid Test-bed. A job is
submitted to a site gatekeeper, and each site supports a scheduler (Condor) for local load balancing of the
compute cluster within that site. A canonical DAG is prepared using the Chimera Virtual Data Language
consisting of two execution nodes in which each node requires three external input files and generates one
output file. A workflow of 120 such DAGs is stored in the Chimera Virtual Data Catalog and then
submitted to the SPHINX scheduling server for each experiment.

3.2 Benchmark planning algorithms

In order to demonstrate the functionality of workflow management, a set of simple, benchmark planning

and replication algorithms has been implemented into the scheduling framework. Several strategies
currently exist in the Grid community and one may categorize them according to: matchmaking [Ramen
98], knowledge-based approach utilizing AI technologies [Blythe 03], data availability based strategies
[Ranganathan 02] and economy based file access optimization [Carman 02]. Indeed, many of these
strategies have been implemented in various Grid projects. The tests presented here do not yet attempt to
implement such strategies, but rather attempt to show that SPHINX is able to provide researchers with an
environment in which one may plug-in different strategy modules and compare the performance of existing
and future scheduling strategies.

As benchmark strategies, we choose to select job execution sites according to the following two
algorithms. The first is a simple round robin method, which is based on a First-In-First-Out (FIFO)
strategy, and does not exploit the benefits of just-in-time scheduling. Such a strategy takes advantage of
possible parallelism provided by multi-processor computing across different grid sites, but does not take
advantage of important information such as grid topology, job tracking, grid weather, or data replication
services. As a second strategy, we augment the round robin strategy with upper limits on the number of
jobs that are scheduled at an execution site at any particular time. The upper limits at different sites are set
according to the number of available compute processors available at each site. Together, the upper limits
incorporate system-tuning information based on the topology of the grid and therefore act as a throttle for
work submission, allowing for a richer, non-trivial use of just-in-time scheduling.

3.3 Observation

Job Distribution on Grid Sites

60 60 60 60
52

106

25

57

0

20

40

60

80

100

120

DGT IGT UCSD CALTECH

Sites

N
um

be
r o

f J
ob

s

Round Robin

Upper Limit

Workflow Execution Time

833 816 781723

3250

684 679659

0

500

1000

1500

2000

2500

3000

3500

DGT IGT UCSD CALTECH

Sites

Ti
m

e
(s

ec
.)

Round Robin

Upper Limit

 Figure 3: Job distribution and workflow execution time on grid sites according to the planning
algorithms

Even though the number of assigned jobs on IGT is increased with large number, the workflow
execution time on the site keeps stable. It means that IGT is capable to accept the addition al jobs without
overload. On the other hand, the workflow execution time on UCSD is decreased dramatically with the
decreased number of assigned jobs. It explains that extra overload on UCSD are taken by IGT leading to
evenly distributed workload on the four sites. As a result, the workflow execution times are similar closely
on all the sites with the upper limit-planning algorithm. By considering workload information on each grid
site a planner can make more efficient planning of jobs to the grid sites.

Figure 4 shows planning and executing time of submitted jobs. From the first graph, we can detect that
child job queuing and planning takes large amount of total DAG execution time on the both planning
algorithms. The child job queuing and planning depend mostly on the parent job execution according to
data dependency. A smart planning algorithm can reduce the queuing time by assigning the parent job to a
computing resource efficiently resulting to reducing total DAG execution time. For example from our
experiment, the upper limit method provides less queuing time than the round robin does. We can also
detect that the ratio of the queuing and planning time of the child job over DAG execution time is greater
with the upper limit method than with the round robin. We understand that the case happens because the
job planning time on SPHINX is not affected much by the planning algorithms even though the queuing
time and the execution time is changed according to the algorithms. From the first and second figures, the
parent job planning time is consistent, while job execution time is changed a lot according to the planning
algorithms.

Average DAG/Jobs Planning and Executing Time

3400

2154

546 613

1253

764

1863

1433
1537

721

0

500

1000

1500

2000

2500

3000

3500

4000

RoundRobin UpperLimit

Strategies

Ti
m

e
(s

ec
.)

DAG Completion

Parent Job Planning

Parent Job Executing

Child Job Planning

Child Job Executing

Longest DAG/Jobs Planning and Execut ing Time

7881

1833

4810

6569

4930

3224

1773
1214

2432

1126

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

P la n n in g /E xe c u t in g

Round Robin
Upper Limit

Figure 4: Average DAG and Jobs planning and executing time, and the longest planning and
executing time

Comparing the longest planning and executing time with the average time for the both algorithms, we
realize that time variation with the upper limit is much smaller than with the round robin. As we can find
from Figure 3, with the round robin, UCSD is under the high overload, while IGT is not. From these facts,
we can see that most jobs assigned to UCSD take the longest queuing and executing time, while jobs in
IGT take short time, and it makes the large variation between the average and longest time. With the
upper limit, the planner distributes jobs to the sites evenly according to the computing capabilities. It
makes job planning and executing time on the entire sites consistent, and the variance becomes small.

4. Conclusion and Future Directions

 Using the distributed services architecture provides the advantage of knowledge-based decision
making. It alleviates the grid-user of scheduling the jobs himself on the grid. Job tracking and re-
submission facilities add to the system fault-tolerance at a job-level. Analysis of results is expedited with
easy remote file access.

 More experiments are in progress which compares the different scheduling strategies and the
effectiveness of monitoring and feedback information. We are also in the process of verification of
adherence by Sphinx to policies and QoS requirements put down by the users.

5. Acknowledgements

• California Institute of Technology
– Julian Bunn, Iosif Legrand, Harvey Newman, Suresh Singh, Conrad Steenberg, Michael

Thomas, Frank Van Lingen, Yang Xia
• University of Florida

– Dimitri Bourilkov, Craig Prescott
• Fermi National Accelerator Laboratory

– Anzar Afaq, Greg Graham

6. References

[Basney 99] Basney, J., Livny, M. Deploying a High Throughput Computing Cluster, High Performance
Cluster Computing, Rajkumar Buyya, Editor, Vol. 1, Chapter 5, Prentice Hall PTR, May 1999.

[Blythe 03b] Blythe, J., Deelman, E., Gil, Y., et al, The Role of Planning in Grid Computing, To appear in
Proceedings of the 13th International Conference on Automated Planning and Scheduling (ICAPS), June 9-
13, 2003, Trento, Italy.

[Carman 02] Carman, M., Zini, F., Serafini, L. Towards an Economy-Based Optimisation of File Access
and Replication on a Data Grid, Proceedings of the 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID’02)

[CMS04] The compact muon solenoid, http://www.uscms.org, 2004

[Condor04] http://www.cs.wisc.edu/condor, 2004

[Deelman 02] Deelman, E., Blythe, J., Gil, Y., Kesselman, C. Pegasus: Planning for Execution in Grids.
Technical Report GriPhyN-2002-20, Nov. 2002

[EDG04] http://www.eu-datagrid.org, 2004

[Foster99] I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a Future Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.

[Foster03] Ian Foster, Jens Vockler, Michael Wilde, Yong Zhao, The Virtual Data Grid: A New Model and
Architecture for Data-Intensive Collaboration, Proceedings of the 2003 CIDR Conference, January 2003

[Globus04] http://www.globus.org, 2004

[GriPhyN04] http://www.griphyn.org, 2004

[Grid3] http://www.ivdgl.org/grid3/, 2003

[In03] J. U. In, A. Arbree, P. Avery, R. Cavanaugh, S. Kategeri, and S. Ranka, “A scheduling middleware
for data intensive applications on a grid, Tech. Rep. GriPhyN project technical report 2003-17, 2003.

[LCG04] http://lcg.cern.ch, 2004

[Newman03] H.B. Newman, I.C. Legrand, P. Galvez, R. Voicu, C. Cirstoiu, MonALISA: A Distributed
Monitoring Service Architecture, CHEP 2003, La Jola, California, March 2003

[Rademakers98] Fons Rademakers, Rene Brun, ROOT: An Object-Oriented Data Analysis Framework,
Linux Journal, Issue 51, July 1998

[Ramen 98] Ramen, R., Livny, M., Solomon, M., Matchmaking: Distributed Resource Management for
High Throughput Computing, Proceedings of the Seventh IEEE International Symposium on High
Performance Distributed Computing, July 28-31, 1998, Chicago, IL

[Ranganathan 02] Ranganathan, K., Foster, I. Decoupling Computation and data Scheduling in Distributed
Data Intensive Applications. International Symposium for High Performance Distributed Computing
(HPDC-11), Edinburgh, July 2002.

[Ruda 01] Ruda, M. Integrating GRID tools to build a computing resource broker: activities of DataGrid
WP1. CHEP 2001, Beijing, September 2001.

 [Sandholm] Thomas Sandholm, Jarek Gawor, Globus Toolkit 3 Core – Agrid Service Container
Framework, http://www-unix.globus.org/toolkit/documentation.html

[Segal 00] Segal, B. Grid Computing: The European Data Project. IEEE Nuclear Science Symposium

[Steenberg03] http://clarens.sourceforge.net

[Thain03] Douglas Thain, Todd Tannenbaum, and Miron Livny, “Condor and the Grid”, in Fran Berman,
Anthony J.G. Hey, Geoffrey Fox, editors, Grid Computing: Making The Global Infrastructure a Reality,
John Wiley, 2003. ISBN: 0-470-85319-0

[VDT04] http://www.lsc-group.phys.uwm.edu/vdt/, 2004

[Weissman 99] Weismann, J. Prophet: Automated Scheduling of SPMD Programs in Workstation
Networks, Concurrency: Practice and Experience, Vol. 11, No. 6, May 1999, pp. 301-321.

