
Data Confidentiality in Data Confidentiality in
Collaborative ComputingCollaborative Computing

Mikhail Atallah

Department of Computer Science
Purdue University

CollaboratorsCollaborators

• Ph.D. students:
– Marina Blanton (exp grad ‘07)
– Keith Frikken (grad ‘05)
– Jiangtao Li (grad ‘06)

• Profs:
– Chris Clifton (CS)
– Vinayak Deshpande (Mgmt)
– Leroy Schwarz (Mgmt)

The most useful data is The most useful data is
scattered and hiddenscattered and hidden

• Data distributed among many parties
• Could be used to compute useful

outputs (of benefit to all parties)
• Online collaborative computing looks

like a “win-win”, yet …
• Huge potential benefits go unrealized
• Reason: Reluctance to share

information

Reluctance to Share InfoReluctance to Share Info

• Proprietary info, could help competition
– Reveal corporate strategy, performance

• Fear of loss of control
– Further dissemination, misuse

• Fear of embarrassment, lawsuits
• May be illegal to share
• Trusted counterpart but with poor

security

Securely Computing f(X,Y)Securely Computing f(X,Y)

• Inputs:
– Data X (with Bob), data Y (with Alice)

• Outputs:
– Alice or Bob (or both) learn f(X,Y)

Bob Alice

Has data X Has data Y

SSecure ecure MMultiparty ultiparty CComputationomputation

• SMC: Protocols for computing with
data without learning it

• Computed answers are of same
quality as if information had been
fully shared

• Nothing is revealed other than the
agreed upon computed answers

• No use of trusted third party

SMC (contSMC (cont’’d)d)

• Yao (1982): {X <= Y}
• Goldwasser, Goldreich, Micali, …
• General results

– Deep and elegant, but complex and slow
– Limited practicality

• Practical solutions for specific problems
• Broaden framework

Potential Benefits Potential Benefits ……

• Confidentiality-preserving collaborations

• Use even with trusted counterparts

– Better security (“defense in depth”)

– Less disastrous if counterpart suffers from
break-in, spy-ware, insider misbehavior, …

– Lower liability (lower insurance rates)

• May be the only legal way to collaborate

– Anti-trust, HIPAA, Gramm-Leach-Bliley, …

…… and Difficultiesand Difficulties

• Designing practical solutions
– Specific problems; “moderately untrusted”

3rd party; trade some security; …

• Quality of inputs
– ZK proofs of well-formedness (e.g., {0,1})
– Easier to lie with impunity when no one

learns the inputs you provide
– A participant could gain by lying in

competitive situations

• Inverse optimization

Quality of InputsQuality of Inputs

• The inputs are 3rd-party certified
–Off-line certification
–Digital credentials
– “Usage rules” for credentials

• Participants incentivized to provide
truthful inputs
–Cannot gain by lying

Variant: OutsourcingVariant: Outsourcing

• Weak client has all the data
• Powerful server does all the expensive

computing
– Deliberately asymmetric protocols

• Security: Server learns neither input
nor output

• Detection of cheating by server
– E.g., server returns some random values

Models of ParticipantsModels of Participants

• Honest-but-curious
–Follow protocol
–Compute all information possible

from protocol transcript
• Malicious

–Can arbitrarily deviate from protocol
• Rational, selfish

–Deviate if gain (utility function)

Examples of ProblemsExamples of Problems
• Access control, trust negotiations
• Approximate pattern matching & sequence comparisons
• Contract negotiations
• Collaborative benchmarking, forecasting
• Location-dependent query processing
• Credit checking
• Supply chain negotiations
• Data mining (partitioned data)
• Electronic surveillance
• Intrusion detection
• Vulnerability assessment
• Biometric comparisons
• Game theory

Hiding Intermediate ValuesHiding Intermediate Values

• Additive splitting
– x = x’ + x”, Alice has x’, Bob has x”

• Encoder / Evaluator
–Alice uses randoms to encode the

possible values x can have, Bob
learns the random corresponding to x
but cannot tell what it encodes

Hiding Intermediate Hiding Intermediate …… (cont(cont’’d)d)

• Compute with encrypted data, e.g.
• Homomorphic encryption

–2-key (distinct encrypt & decrypt
keys)

–EA(x)*EA (y)= EA(x+y)
–Semantically secure: Having EA(x)

and EA(y) do not reveal whether x=y

Example: BlindExample: Blind--andand--PermutePermute

• Input: c1, c2 , … , cn additively split
between Alice and Bob: ci = ai + bi
where Alice has ai , Bob has bi

• Output: A randomly permuted version
of the input (still additively split) s.t.
neither side knows the random
permutation

BlindBlind--andand--Permute ProtocolPermute Protocol

1. A sends to B: EA and EA(a1),…,EA(an)
2. B computes EA(ai)*EA(ri) = EA(ai +ri)
3. B applies πB to EA(a1+r1), …, EA(an+rn)

and sends the result to A
4. B applies πB to b1–r1, …, bn–rn

5. Repeat the above with the roles of A
and B interchanged

Dynamic Programming for Dynamic Programming for
Comparing BioComparing Bio--SequencesSequences

⎪
⎩

⎪
⎨

⎧

+−
+−
+−−

=
)()1,(
)(),1(

),()1,1(
min),(

j

i

ji

IjiM
DjiM
SjiM

jiM
μ
λ
μλ

• M(i,j) is the minimum in cost of
transform the prefix of X of
length i into the prefix of Y of
length j

A C T G A T G
0 1 2 3 4 5 6 7

A 1 0 1 2 3 4 5 6
T 2 1 2 1 2 3 4 5
G 3 2 3 2
G 4
A 5
A 6

I
A 1
C 1
T 1
G 1

D
A 1
C 1
T 1
G 1

A C T G
A 0 ∞ ∞ ∞
C ∞ 0 ∞ ∞
T ∞ ∞ 0 ∞
G ∞ ∞ ∞ 0

Insertion
Cost

Deletion
Cost

Substitution
Cost

0 1 2 3 4 … m

0
 1

 2
 3

 …
n

Correlated Action SelectionCorrelated Action Selection

• (p1,a1,b1), … , (pn,an,bn)
• Prob pj of choosing index j
• A (resp., B) learns only aj (bj)
• Correlated equilibrium
• Implemention with third-party

mediator
• Question: Is mediator needed?

Correlated Action Selection (contCorrelated Action Selection (cont’’d)d)

• Protocols without mediator exist
• Dodis et al. (Crypto ‘00)

–Uniform distribution
• Teague (FC ‘04)

–Arbitrary distribution, exponential
complexity

• Our result: Arbitrary distribution
with polynomial complexity

Correlated Action Selection (contCorrelated Action Selection (cont’’d)d)

• A sends to B: EA and a permutation of
the n triplets EA(pj),EA(aj),EA(bj)

• B permutes the n triplets and computes
EA(Qj)=EA(p1)*…* EA(pj)=EA (p1+…+pj)

• B computes EA(Qj-rj),EA(aj-r’j),EA(bj-r”j),
then permutes and sends to A the n
triplets so obtained

• A and B select an additively split
random r (=rA+rB) and “locate” r in the
additively split list of Qjs

Access ControlAccess Control
• Access control decisions are often

based on requester characteristics
rather than identity

–Access policy stated in terms of
attributes

• Digital credentials, e.g.,

–Citizenship, age, physical condition
(disabilities), employment (government,
healthcare, FEMA, etc), credit status,
group membership (AAA, AARP, …),
security clearance, …

Access Control (contAccess Control (cont’’d)d)
• Treat credentials as sensitive

–Better individual privacy

–Better security

• Treat access policies as sensitive

–Hide business strategy (fewer
unwelcome imitators)

–Less “gaming”

ModelModel

• M = message ; P = Policy ; C, S = credentials
– Credential sets C and S are issued off-line, and can

have their own “use policies”

• Client gets M iff usable Cj’s satisfy policy P

• Cannot use a trusted third party

Server Client

Request for M

M, P C=C1, …,Cn

Protocol

M if C
satisfies P

S=S1,…,Sm

Solution RequirementsSolution Requirements
• Server does not learn whether client got

access or not

• Server does not learn anything about
client’s credentials, and vice-versa

• Client learns neither server’s policy
structure nor which credentials caused
her to gain access

• No off-line probing (e.g., by requesting
an M once and then trying various
subsets of credentials)

CredentialsCredentials
• Generated by certificate authority (CA),

using Identity Based Encryption
• E.g., issuing Alice a student credential:

– Use Identity Based Encryption with ID =
Alice||student

– Credential = private key corresponding to ID

• Simple example of credential usage:
– Send Alice M encrypted with public key for ID
– Alice can decrypt only with a student credential
– Server does not learn whether Alice is a student

or not

PolicyPolicy

• A Boolean function pM(x1, …, xn)
– xi corresponds to attribute attri

• Policy is satisfied iff
– pM(x1, …, xn) = 1 where xi is 1 iff there is a

usable credential in C for attribute attri

• E.g.,

– Alice is a senior citizen and has low income

– Policy=(disability∨senior-citizen)∧low-income
– Policy = (x1 ∨ x2) ∧ x3 = (0 ∨ 1) ∧ 1 = 1

Ideas in SolutionIdeas in Solution

• Phase 1: Credential and Attribute Hiding
– For each attri server generates 2 randoms ri[0], ri[1]

– Client learns n values k1, k2, …, kn s.t. ki = ri[1] if she
has a credential for attri , otherwise ki = ri[0]

• Phase 2: Blinded Policy Evaluation
– Client’s inputs are the above k1, k2, …, kn

– Server’s input now includes the n pairs ri[0], ri[1]

– Client obtains M if and only if pM(x1, …, xn) = 1

Concluding RemarksConcluding Remarks

• Promising area (both research and
potential practical impact)

• Need more implementations and
software tools
–FAIRPLAY (Malkhi et.al.)

• Currently impractical solutions will
become practical

