

Data Confidentiality in Collaborative Computing Mikhail Atallah

Department of Computer Science Purdue University

http://www.cerias.purdue.edu

Collaborators

- Ph.D. students:
 - Marina Blanton (exp grad '07)
 - Keith Frikken (grad '05)
 - Jiangtao Li (grad '06)
- Profs:
 - Chris Clifton (CS)
 - Vinayak Deshpande (Mgmt)
 - Leroy Schwarz (Mgmt)

The most useful data is scattered and hidden

- Data distributed among many parties
- Could be used to compute useful outputs (of benefit to all parties)
- Online collaborative computing looks like a "win-win", yet ...
- Huge potential benefits go unrealized
- Reason: Reluctance to share
 information

Reluctance to Share Info

- Proprietary info, could help competition
 Reveal corporate strategy, performance
- Fear of loss of control
 - Further dissemination, misuse
- Fear of embarrassment, lawsuits
- May be illegal to share
- Trusted counterpart but with poor security

Securely Computing f(X,Y)

Alice

Has data X

Has data Y

• Inputs:

- Data X (with Bob), data Y (with Alice)

- Outputs:
 - Alice or Bob (or both) learn f(X,Y)

Secure Multiparty Computation

- SMC: Protocols for computing with data without learning it
- Computed answers are of same quality as if information had been fully shared
- Nothing is revealed other than the agreed upon computed answers
- No use of trusted third party

SMC (cont'd)

- Yao (1982): {X <= Y}
- Goldwasser, Goldreich, Micali, ...
- General results
 - Deep and elegant, but complex and slow
 - Limited practicality
- Practical solutions for specific problems
- Broaden framework

PURDUE UNIVERSITY

Potential Benefits ...

- Confidentiality-preserving collaborations
- Use even with trusted counterparts
 - Better security ("defense in depth")
 - Less disastrous if counterpart suffers from break-in, spy-ware, insider misbehavior, ...
 - Lower liability (lower insurance rates)
- May be the only legal way to collaborate
 - Anti-trust, HIPAA, Gramm-Leach-Bliley, ...

... and Difficulties

- Designing practical solutions
 - Specific problems; "moderately untrusted" 3rd party; trade some security; ...
- Quality of inputs
 - ZK proofs of well-formedness (e.g., {0,1})
 - Easier to lie with impunity when no one learns the inputs you provide
 - A participant could gain by lying in competitive situations
- Inverse optimization

Quality of Inputs

- The inputs are 3rd-party certified
 - Off-line certification
 - Digital credentials
 - "Usage rules" for credentials
- Participants incentivized to provide truthful inputs
 - -Cannot gain by lying

Variant: Outsourcing

- Weak client has all the data
- Powerful server does all the expensive computing
 - Deliberately asymmetric protocols
- Security: Server learns neither input nor output
- Detection of cheating by server
 - E.g., server returns some random values

Models of Participants

- Honest-but-curious
 - -Follow protocol
 - Compute all information possible from protocol transcript
- Malicious
 - -Can arbitrarily deviate from protocol
- Rational, selfish
 - Deviate if gain (utility function)

Examples of Problems

- Access control, trust negotiations
- Approximate pattern matching & sequence comparisons
- Contract negotiations
- Collaborative benchmarking, forecasting
- Location-dependent query processing
- Credit checking
- Supply chain negotiations
- Data mining (partitioned data)
- Electronic surveillance
- Intrusion detection
- Vulnerability assessment
- Biometric comparisons
- Game theory

Hiding Intermediate Values

- Additive splitting
 - x = x' + x'', Alice has x', Bob has x''
- Encoder / Evaluator
 - Alice uses randoms to encode the possible values x can have, Bob learns the random corresponding to x but cannot tell what it encodes

Hiding Intermediate ... (cont'd)

- Compute with encrypted data, e.g.
- Homomorphic encryption
 - 2-key (distinct encrypt & decrypt keys)
 - $-E_{A}(x) * E_{A}(y) = E_{A}(x+y)$
 - -Semantically secure: Having $E_A(x)$ and $E_A(y)$ do not reveal whether x = y

Example: Blind-and-Permute

- Input: $c_1, c_2, ..., c_n$ additively split between Alice and Bob: $c_i = a_i + b_i$ where Alice has a_i , Bob has b_i
- Output: A randomly permuted version of the input (still additively split) s.t. neither side knows the random permutation

Blind-and-Permute Protocol

- 1. A sends to B: E_A and $E_A(a_1), \dots, E_A(a_n)$
- 2. B computes $E_A(a_i) * E_A(r_i) = E_A(a_i + r_i)$
- 3. B applies π_B to $E_A(a_1+r_1)$, ..., $E_A(a_n+r_n)$ and sends the result to A
- 4. B applies π_B to $b_1 r_1, \dots, b_n r_n$
- 5. Repeat the above with the roles of A and B interchanged

PURDUE UNIVERSITY

Dynamic Programming for Comparing Bio-Sequences

		0	1	2	3	4			m
			Α	С	Т	G	Α	Т	G
0		0	1	2	3	4	5	6	7
<u> </u>	Α	1	0	1	2	3	4	5	6
Ν	Т	2	1	2	1	2	3	4	5
ω	G	3	2	3-	→2				
÷	G	4							
	Α	5							
D	Α	6							

M(i,j) is the minimum in cost of transform the prefix of X of length i into the prefix of Y of length j

$$M(i, j) = \min \begin{cases} M(i-1, j-1) + S(\lambda_i, \mu_j) \\ M(i-1, j) + D(\lambda_i) \\ M(i, j-1) + I(\mu_j) \end{cases}$$

http://www.cerias.purdue.edu

Correlated Action Selection

- $(p_1, a_1, b_1), \dots, (p_n, a_n, b_n)$
- Prob p_j of choosing index j
- A (resp., B) learns only a_i (b_i)
- Correlated equilibrium
- Implemention with third-party mediator
- Question: Is mediator needed?

Correlated Action Selection (cont'd)

- Protocols without mediator exist
- Dodis et al. (Crypto '00)
 Uniform distribution
- Teague (FC '04)
 - Arbitrary distribution, exponential complexity
- Our result: Arbitrary distribution with polynomial complexity

Correlated Action Selection (cont'd)

- A sends to B: E_A and a permutation of the n triplets E_A(p_j), E_A(a_j), E_A(b_j)
- B permutes the n triplets and computes $E_A(Q_j) = E_A(p_1)^* \dots * E_A(p_j) = E_A(p_1 + \dots + p_j)$
- B computes E_A(Q_j-r_j), E_A(a_j-r'_j), E_A(b_j-r"_j), then permutes and sends to A the n triplets so obtained
- A and B select an additively split random r (= $r_A + r_B$) and "locate" r in the additively split list of Q_j s

Access Control

- Access control decisions are often based on requester characteristics rather than identity
 - Access policy stated in terms of attributes
- Digital credentials, e.g.,
 - Citizenship, age, physical condition (disabilities), employment (government, healthcare, FEMA, etc), credit status, group membership (AAA, AARP, ...), security clearance, ...

Access Control (cont'd) • Treat credentials as sensitive –Better individual privacy –Better security

Treat access policies as sensitive

Hide business strategy (fewer unwelcome imitators)

-Less "gaming"

Model

- M = message ; P = Policy ; C, S = credentials
 - Credential sets C and S are issued off-line, and can have their own "use policies"
- Client gets M iff usable C_i's satisfy policy P
- Cannot use a trusted third party

Solution Requirements

- Server does not learn whether client got access or not
- Server does not learn anything about client's credentials, and vice-versa
- Client learns neither server's policy structure nor which credentials caused her to gain access
- No off-line probing (e.g., by requesting an M once and then trying various subsets of credentials)

Credentials

- Generated by certificate authority (CA), using Identity Based Encryption
- E.g., issuing Alice a student credential:
 - Use Identity Based Encryption with ID = Alice||student
 - Credential = private key corresponding to ID
- Simple example of credential usage:
 - Send Alice M encrypted with public key for ID
 - Alice can decrypt only with a student credential
 - Server does not learn whether Alice is a student or not

PURDUE UNIVERSITY

Policy

- A Boolean function p_M(x₁, ..., x_n)
 x_i corresponds to attribute attr_i
- Policy is satisfied iff
 - $-p_M(x_1, ..., x_n) = 1$ where x_i is 1 iff there is a usable credential in C for attribute $attr_i$
- E.g.,
 - Alice is a senior citizen and has low income
 - Policy=(disabilityvsenior-citizen)

- Policy =
$$(x_1 \lor x_2) \land x_3 = (0 \lor 1) \land 1 = 1$$

Ideas in Solution

- Phase 1: Credential and Attribute Hiding
 - For each *attr_i* server generates 2 randoms $r_i[0]$, $r_i[1]$
 - Client learns *n* values k_1 , k_2 , ..., k_n s.t. $k_i = r_i$ [1] if she has a credential for $attr_i$, otherwise $k_i = r_i$ [0]
- Phase 2: Blinded Policy Evaluation
 - Client's inputs are the above $k_1, k_2, ..., k_n$
 - Server's input now includes the *n* pairs $r_i[0]$, $r_i[1]$
 - Client obtains M if and only if $p_M(x_1, ..., x_n) = 1$

Concluding Remarks

- Promising area (both research and potential practical impact)
- Need more implementations and software tools
 - -FAIRPLAY (Malkhi et.al.)
- Currently impractical solutions will become practical

