
A Method-based Whole-Program Watermarking Scheme For Java Class Files

Anshuman Mishra, Rajeev Kumar, and P. P. Chakrabarti
Department of Computer Science & Engineering

Indian Institute of Technology Khargapur
Kharagpur, WB 721 302, India

Abstract

We outline a scheme to perform static watermarking on
an entire Java class file, method by method. We show that
our scheme offers a structural approach towards increased
resistance against tampering attacks. We demonstrate how
the watermark can be used to determine in what way the
class file has been modified, if tampering has happened.
We compare against other previously known watermarking
schemes and show that our scheme provides watermarking
with increased robustness and decreased visibility.

Keywords: Software watermark, software piracy, Java
class file, control-flow diagram

1 Introduction

Software piracy has reached rampant proportions in to-
day’s world. When coupled with the ease of decompiling
program code written to work on virtual execution-based
systems such as Microsoft’s .NET or Sun’s Java platform,
the protection of intellectual property rights over software
becomes a paramount issue which needs to be addressed.
Watermarking schemes which had been developed to as-
sert authorship or ownership control over digital artifacts
such as images, video or audio, are being extended to cover
software objects. However, most software watermarking
schemes fail due to the ease by which software can be
tampered with, keeping the overall semantics of the pro-
gram constant. In the following subsection, we give a brief
overview of previous work done in the field of software wa-
termarking.

1.1 Previous Work in Software Watermarking

In general, watermarking implies the embedding of some
form of marker into a digital artifact such as an image, an
audio file, a video file, or even a software package, so as to
assert authorship, or to perform validation and authentica-
tion, or to enforce licensing restrictions, or a combination of

any of the above. Software watermarking is a specific form
of watermarking in which the digital object which is to be
modified to carry the watermark is a software package. A
major constraint which is encountered while watermarking
software is that of keeping the semantics of the program un-
changed while embedding the watermark. This is a difficult
task to perform, and various specialized schemes have been
proposed keeping the above constraint in mind.

Though a general survey of the field of software water-
marking has been carried out before, for example by Zhu
et al. [9], we would like to outline a few major advances in
this area. The first formal software watermarking approach
was described by the patent of Davidson and Myhrvold [4],
in which they described a scheme to embed a watermark
inside a program by rearranging the order in which basic
blocks of the program were arranged. Curran et al. [3]
described a scheme in which the call graph depths of the
method are changed to reflect the watermark encoding. A
scheme of encoding the watermark inside a dummy method
in the form of opcodes is described by Monden et al. [5];
since the dummy method is never executed, any type of wa-
termark may be stored by proper encoding.

Venkatesan et al. [8] described a scheme of embedding
watermarks by modifying the control-flow graph with the
addition of specially marked nodes which denote the value
of the watermark.

As opposed to the static watermarking schemes de-
scribed above (so called because the watermark is embed-
ded in the statictext of the program), Collberg & Thom-
borson [2] described a novel method of watermarking, in
which the watermark is constructed dynamically during the
program execution, in the form of a graph. Inspection of
the graph at runtime alone can verify the value of the water-
mark, and is not susceptible to static-time analysis. Opaque
predicates, the values of which are previously known to the
programmer but cannot be determined by static analysis of
the program, can be constructed using the graph.

Some other experimental watermarking methods
(e.g., [7]) include using threads to encode watermarks
in the choice of execution of basic blocks depending on

1



the input pattern of the program. The input is kept secret
and the watermark is recognized by tracing the program
execution with the secret input. This is a low-capacity
scheme, since with every encoded watermark bit, the size
of the software increases by nearly 1 KB.

1.2 Problems with the Above Approaches

One problem with most of the above approaches is that
there is no close coupling between the program and the wa-
termark, i.e. the watermark can be easily damaged or re-
moved without changing the program by simply applying
semantics-preserving transforms. This is especially true for
the schemes described in [4, 5].

Another problem is that in the case of schemes such as
that of [2], it is not very difficult for humans to recognize
which parts of the software belong to the original code and
which belong to the dynamic watermark generating code.
The scheme of [8] comes closest to our approach. One ma-
jor difference is that the former marks the pieces of code
which correspond to the watermark in a special manner –
no such marking is done in our scheme, which ensures that,
once the watermark is inserted, there cannot be any dis-
tinction between the original code and the watermark-based
code.

2 Problem Outline

Let us envisage the following scenario - Alice, producer
of the softwareS, wants to distribute the latter over some
insecure channel, where there is a possibility of code tam-
pering. Alice wants to embed a watermark onto the software
which should fulfill the following criteria:

1. The watermark should berobust, i.e., it should be
resistant to software transforms which preserve the
meaning of the program.

2. The watermark should beinvisible, i.e., it should only
be detectable by using special forensic software.

3. The watermark should be resistant to transforms which
try to overwrite it with another watermark or otherwise
modify it in some manner.

4. The watermark should contain information which val-
idates the claim that Alice could be the original creator
of the softwareS.

5. The software consumer should have no way of remov-
ing the watermark, even if provided with the forensic
software.

We must note here that it is very difficult, if not impossible,
to produce a watermark that fulfills the above criteria, since

the watermark will be encoded in some form in the soft-
ware, and errors will creep in when a semantics-preserving
transform is applied. Another reason is that since the water-
mark will be an externally-injected piece of code, it will be
very difficult to stop an automated software tool such as a
flow analyzer from tracing out code which does not belong
to the main algorithm being implemented.

In this paper, we suggest the following general method-
ology to be followed by Alice:

• Alice embeds a watermark consisting of some encoded
authorship information into each and every method of
a Java class file.

• Alice employs aweb-spiderto search for suspicious
pieces of code, which could match Alice’s softwareS
or use it in an enveloped format. Suspicious pieces of
code could also be reported to Alice by neutral third
parties, such as law enforcement agencies.

• Alice employs a specific software system (forensic
software) to extract the watermark from the software.
For proper extraction, the forensic software should re-
quire some additional input which should be known
only to Alice. In this way, watermark removal by ma-
licious third parties becomes very difficult.

3 Proposed Watermarking Scheme

The basis of our scheme lies in the fact that what Alice
is trying to protect is her intellectual property in the form
of the program’s algorithm as well as implementation. Any
algorithm can be implemented by using the structural par-
adigm of sequence, selection and iteration. Hence, a mi-
nor modification of the program structure in the sense of
semantics-preserving rearrangement of code, or usage of a
FOR loop instead of a DO-WHILE loop should not affect
the fact that the program remains the same. However, a ma-
jor modification in the sense of embedding the original pro-
gram into a much larger program would ideally still allow
us to extract relevant parts and check whether the original
producer’s intellectual property rights still hold.

The scheme we outline in this paper is hence based com-
pletely on the structure of the program. A minor modifica-
tion of the program would lead to a minor tampering of the
watermark - redundancy has to be built into the watermark
to take care of such possibilities. We will point out a few
mechanisms by which this can be done.

3.1 Basic Blocks and Value Assignments

Let us consider a Java class file consisting of many meth-
ods. Each method can be decomposed into a control-flow

2



diagram [1, 6], consisting of only four possible types of ba-
sic blocks:

• Simple sequential blocks, consisting of at most 8 in-
structions.

• Extended blocks, consisting of a sequence of one or
more sub-blocks, which can be of any type.

• Extended if-then-else blocks, consisting of two ex-
tended sub-blocks, corresponding to the THEN block
and the ELSE block.

• Extended iteration blocks, consisting of one extended
sub-block, which undergoes iteration.

We notice that the above four types of block suffice in de-
scribing all program behavior, and that all higher-level con-
structs such as FOR loops or DO-WHILE loops can be de-
composed into combinations of the above block types.

To each basic block and extended block we assign a
value, based on the following scheme:

1. A simple sequential block is assigned the value of the
number of its instructions, up to a maximum of 8.

2. An extended block is assigned the value of the sum of
the values of its individual sub-blocks, taking into ac-
count the number of variables defined in the sequence
- each such variable is assigned a value of 4. For ex-
ample, suppose an extended block B consists of three
simple sequential blocks{8,8,6}, and the number of
variables defined in the sequence is 6, then the value
of the block B is 22+6*4=46.

3. An extended if-then-else block is assigned the value of
the sum of the values of the THEN extended block and
the IF extended block, multiplied by 16. For example,
suppose an if-then-else block ITE consists of the sub-
blocks THEN={46} and ELSE={48}, the value of ITE
will be (46+48)*16=752.

4. An extended iteration block is assigned the value of
the extended sub-block which is to be iterated, multi-
plied by 256. For example, suppose an iteration block
IB consists of the sub-block SB={46} which is to be
iterated, the value of IB will be 46*256=11776.

The value of the entire method is taken to be the value of
the entire control-flow diagram, taken as an extended block
whose value is summed up, also taking into account the
number of variables defined in the sequence, the latter being
assigned a value of 4 each. For example, say a method con-
sists of the extended block{8,8,6,ITE{46,48},IB{46},1},
and defines 6 variables, then the value of the entire method
will be 8+8+6+16*(46+48)+256*46+1+6*4=12575. We
notice that as the complexity of a method increases, so does
its assigned value.

3.2 Watermark Insertion Algorithm

Our algorithm is divided into the following two phases:

1. The software producer Alice generates a watermarkW
which needs to be inserted into the Java class fileP. W
can be expressed in the form of either a number or a
sequence of bits.

2. For each methodM i in P, do the following:

(a) Extract a control-flow diagram fromM i.

(b) Assign a valueVi based on the scheme described
in the previous section.

(c) Generate a control-flow structureS’ consisting of
a sequence of basic blocks ofdummy codeand
dummy variableswhose valueVw is the same as
that of the watermark.

(d) Insert S’ at appropriate places into the method
M i, thus changing the value ofM i from Vi to
Vi+W.

The following points should be taken care of while inserting
S’ into each methodM i:

• S’ contains dummy code and dummy variables. It is
mandatory that the dummy code use the dummy vari-
ables and generate values which can be merged with
that of the original code, e.g. if the original code is
using some constant,S’ could be used to calculate the
constant and feed it to the original code.

• Depending on the user’s preferences, the watermark
could be inserted at a lesser time-cost and higher
space-cost at the outermost layers of the method, e.g.
just before the end of the method or right at the begin-
ning. The watermark could also be inserted at a higher
time-cost and lesser space-cost into some inner loop of
the method. It is worthwhile to remember that each
length increase of a loop by 1 increases the value of
the method by 256.

Other important points to note during the watermark inser-
tion process are:

• For redundancy purposes which will be explained later
in the paper, ifN methods need to be protected, it is
best if2N+1methods are watermarked.

• The watermarkW which is inserted should ideally be
of the form of a digital fingerprint or author authenti-
cation mark, utilizing public-key cryptography.

• The original valuesVi are stored safely for use in the
watermark extraction phase. These values should only
be known to the software producer Alice and to no-
body else.

3



3.3 Watermark Extraction and Inspection

Extraction. The watermark extraction algorithm pro-
ceeds as follows:

1. The original valuesVi of each methodM i are accepted
from the user.

2. The valuesVi’ are extracted from each method in the
Java class file.

3. For each method, the differenceVi’ - Vi is calculated.

4. For any2N+1watermarked methods, if more thanN+1
methods generate an equal differenceW’ , then the
forensic software deems the watermark of the entire
class file to beW’ .

5. Any method whose differenceVi’ - Vi is different from
W’ by a factor of4, say, is assumed to have been tam-
pered with - the forensic software can generate various
combinations of possible transforms which could have
created the difference4.For example, if the difference
4= -8, the tampering agent could have:

(a) Deleted a sequential basic block of size 8, or

(b) Deleted two variables, or even

(c) Deleted an IF-THEN-ELSE and inserted a block
of size 8 (possible on a softwarecrackingexer-
cise).

Inspection. The job of the forensic software is to extract
the watermark and detect any tampering if possible. In
any case, after the watermark is extracted, the job of in-
specting the watermark and verifying the authenticity of the
code producer Alice still remains - inspection is required to
thwart any man-in-the-middle attacks. Since the watermark
that has been embedded in the software is deemed invisible,
one way of ensuring that inspection leads to authentication
is to encrypt some form of authorship signature using a se-
cret key known only to Alice and use the resulting informa-
tion as a watermark - thus during inspection, Alice can use
her own secret key to decrypt the watermark and get back
her authorship signature. This could be used to verify that
at least parts of the software have been created by Alice.

3.4 Implementation and Performance Tuning

There are various factors which can affect the working
of the above scheme. The correlation between structural
complexity of a method and the magnitude of the method
value leads us to the intuitive conclusion that if we restrict
the size of the watermark to that of a fraction of the method
value, the more complex a method, the greater its capacity

to hold additional embedded information. Also, the redun-
dancy which is implied in adding the watermark toN meth-
ods allows at most[(N-1)/2] methods to be tampered with in
the form of addition or deletion, and such tampering to be
detected by the forensic software. The scheme could thus
be possibly finetuned by allowing the addition of dummy
methods to ensure that all addition/deletion-based tamper-
ing of legitimate methods in a class file could be detected.

Another factor that must be taken into consideration is
the quality of the code representing the watermark which
is inserted into the original code. The former should be of
such a quality as to ensure a much greater computational
load for automated tracing/analysis tools and should be dif-
ficult, if not impossible, to detect by trained humans. One
possible way in which this can be done is by a statistical
analysis of the original code, and generation of code which
matches the statistics, but does not affect (or affects to a
very small extent) the original logical flow of the method.

Robustness of the watermark could be increased by al-
lowing the possibility of tampering errors such as inser-
tions/deletions by, using a crude example, multiplying the
watermark numberW by 10 and inserting the resultant
number into the software. Then any program changes
within the range of±10 could be detected and the original
watermark detected.

We are currently in the process of implementing a con-
figurable watermark insertion program as well as a water-
mark extraction program, written in Java and to be tested
on Java class files. Though the algorithms described in the
preceding two sections were created keeping Java class files
in mind, they can be easily ported or extended to cover
other virtual execution systems such as Microsoft’s Com-
mon Language Infrastructure (CLI).

3.5 Salient Features of the Proposed Scheme

Some points to be noted about our proposed scheme, in
comparison to others, are that, firstly, the scheme offers an
infinite-capacity channel for storage of watermarks with
minimal increase in code size, albeit at the cost of de-
creased performance of the software. This can be achieved
by appropriate insertion of nested loops inside the program,
each loop having a multiplying effect of 256 times on the
value of the sub-block inside. So, two nested loops with 1
dummy instruction inside the innermost loop would give an
added program value of 256*256*1 = 65536, a range of 16
bits, and could be encoded with less than 10 instructions.

Secondly, once the watermark is inserted into the pro-
gram in the form of code, there is theoreticallyno distinc-
tion between the inserted code and the original code.
When code insertion is performed taking into account the
statistical properties of the original program, and if appro-
priate logical connections are made between the original

4



program and the inserted code, seamless integration is pos-
sible and would lead to greater difficulties for malicious
third parties. Of course, the watermark extracting forensic
software would have no problems since it is only concerned
with the overall structure of each method. In comparison to
other watermarking schemes, there is no specialmarkingof
the objects which are carrying the watermarking informa-
tion.

Thirdly, our scheme offersvarious ways to achieve the
same taskof watermark insertion. When Alice decides to
insert her watermark, she can decide to insert it keeping
in mind that she wants minimal time cost, in which case
she can add cheaper blocks such as sequential blocks or IF-
THEN-ELSE blocks. If Alice wants minimal size increase,
she can add more blocks with more time-cost such as itera-
tion blocks, which can be implemented with much less code
size increase. Thus we see that our scheme can be config-
ured to insert the watermark in a variety of ways, depend-
ing upon the requirements of the software producer, without
making a slightest amount of difference to the watermark
extracting forensic software. This is in contrast to other
schemes, where once the insertion mechanism is known to
malicious attackers, the latter can undertake targeted attacks
probing the weaknesses of the mechanism.

4 Results and Ongoing Work

Let us now look back at the original scenario and try to
determine how many of the criteria that were required by
Alice were fulfilled, and to what degree:

1. The scheme allows the watermark to be resistant to se-
quence modifications - insertion/deletion of the code
will result in a change in the extracted watermark.
However, such changes could be trapped as explained
previously, the exact methodology being used being
dependent on the particular implementation of our
scheme.

2. The scheme allows watermarks to be nearly invisible,
provided the inserted code is of similar quality to that
of the original code.

3. The insertion of an encrypted authorship mark ensures
that, even if a malicious third party attempts to insert
their own code, Alice’s original watermark would still
be embedded inside the code, provided the above two
conditions have been fulfilled properly.

4. If the watermark contains Alice’s authorship informa-
tion encrypted using Alice’s secret key, then only Alice
could have had access to it and thus only Alice could
have inserted the watermark. Thus we ensure that Al-
ice’s authorship of the software remains validated.

5. The forensic software requires the original set of
method values as input in order to be used to extract
watermarks. Hence, a malicious user of Alice’s soft-
ware, even with access to the forensic software, would
not be able to tamper with Alice’s watermark.

The scheme outlined in this paper is a work in progress.
As mentioned previously, we are in the process of building
configurable watermark insertion and extraction programs.
We need to evaluate exactly what kind of code to insert, and
should allow users configuration options such as the level
of the method at which to insert the code, e.g. inner loops,
outer loops, etc. as also the strength of the watermark, by
modifying the fraction of the method value up to which wa-
termark code can be inserted, e.g. whether a code increase
of 10%/20%/30% is allowed. Of course, any mechanized
algorithm would fail in the face of human ingenuity, and so
we are constantly trying to find flaws in the scheme which
could be exploited.

References

[1] Aho, Ullman & Sethi, Compilers: Principles, Tech-
niques and Tools, Addison-Wesley, 1986.

[2] C. Collberg, C. Thomborson,Software Watermarking:
Models and Dynamic Embeddings, POPL-99, 1999

[3] D. Curran, N. Hurley, M. Cinneide,Securing Java
through Software Watermarking, PPPJ 2003, Kilkenny,
Ireland, 2003.

[4] R. L. Davidson, N. Myhrvold,Method and System for
Generating and Auditing a Signature for a Computer
Program, US Patent No. 5,559,884; 1996.

[5] A. Monden, H. Iida, K. Ichi Matsumoto,A Practical
Method for Watermarking Java Programs, 24th Com-
puter Software and Applications Conference, 2000.

[6] S. Muchnick,Advanced Compiler Design and Imple-
mentation, Morgan Kaufmann, 1997.

[7] J. Nagra, C. Thomborson,Threading Software Water-
marks, 6th Intl Information Hiding Workshop 2004 (IH
2004), LNCS 3200, 2004.

[8] R. Venkatesan, V. Vazirani, S. Sinha,A Graph-
Theoretic Approach to Software Watermarking, 4th Int.
Information Hiding Workshop, Pittsburgh, PA, 2001.

[9] W. Zhu, C. Thomborson, F-Y Wang,A Survey of Soft-
ware Watermarking, LNCS vol 3495, Springer-Verlag,
pp. 454 - 458, April 2005.

5


