
International Conference of High Performance Computing (HiPC 2005)

Design of an Efficient Architecture for Advanced Encryption Standard
Algorithm Using Systolic Structures

1Suresh Sharma, 2T S B Sudarshan

1Student, Computer Science & Engineering, IIT, Khragpur
2Assistant Professor, Computer Science & Information Systems, BITS, Pilani.

Abstract:
This Paper presents a systolic architecture for
Advanced Encryption standard (AES). Use of systolic
architecture has improved the hardware complexity
and the rate of encryption/decryption. Similarities of
encryption and decryption are used to provide a high
performance using an efficient architecture. The
efficiency of the design is quite high due to use of
short and balanced combinational paths in the design.
The encryption or decryption rate is 3.2-Bits per
clock-cycle and due to the use of pipelined systolic
architecture and balanced combinational paths
maximum clock frequency for the design is quite
high.

Index terms:- Advanced Encryption standard
(AES), Systolic Architecture, processing elements,
regularity, combinational paths.

1. Introduction:-

Advanced Encryption standard (AES) [1,12,13] is
successor of Data Encryption Standard (DES)
[2,12,13]. A symmetric block cipher Rijndael [3] was
standardized by National Institute of Standards and
Technology (NIST) as AES in November 2001. Due
to practical importance of hardware implementation,
the different candidates are implemented on FPGAs
[4,5,6,9] and on ASICs [7,8,10]. This paper presents a
simple and regular hardware architecture based on
systolic architecture [11] to provide a throughput of
3.2 Bits per clock cycle for AES-128 encryption and
decryption.
Systolic Architecture is used for constructing high-
speed, special- purpose devices. In a systolic system,
data flows from the computer memory in a rhythmic
fashion, passing through many processing elements
before it returns to memory .A systolic system
consists of a set of interconnected cells each capable
of performing some simple operations, cells in a
systolic system are typically connected to form a
systolic array or a systolic tree. Information in a
systolic system flows between cells in a pipelined

fashion and communication with the memory or
external devices occurs only through the boundary
cells.
The architecture uses similarities of encryption and
decryption to provide a high level of performance
while keeping the chip size small. The architecture
is highly regular and scalable. The key size can
easily be changed from 128 to 192 or 256 bits by
making very few changes in the design.
The paper is organized as follows. Section 2 gives a
brief overview of the AES algorithm. In section 3, a
summary of available AES architecture is given and
the proposed AES hardware architecture is
described. The performance of the architecture is
compared with other implementations in section 4.
Concluding remarks are given in section 5.

2. AES Algorithm:

The AES takes a 128-bits data block as input and
performs several transformations to encrypt or
decrypt the data. In case of encryption, the input
block is called plaintext and the returned block is
called ciphertext. All intermediate blocks are called
states. These are represented as two-dimensional
array of bytes. AES encryption and decryption are
based on four transformations that are performed
repeatedly in a certain sequence. The number of
repetitions is based on the key size.

2.1. AddRoundKey transformation:-

In the AddRoundKey transformation, a Round Key
is added to the State by a simple bitwise XOR
operation. The AddRoundKey transformation is
self-inverting.

2.2. SubBytes transformation:-

The SubBytes() transformation is a non-linear byte
substitution that operates independently on each
byte of the state using a substitution table (S-box).
This S-box, which is invertible, is constructed by
composing two transformations:

International Conference of High Performance Computing (HiPC 2005)

1. Take the multiplicative inverse in the Galois Field
GF(28) with the irreducible polynomial m(x)=
x8+x4+x3+x+1. The element {00} is mapped to itself.
2. Apply the affine transformation (over GF(2)):
The inverse of SubBytes transformation, which is
needed for decryption, is the inverse of the affine
transformation followed by the same inversion as the
SubBytes transformation

2.3. ShiftRows transformation:-

The ShiftRows transformation rotates each row of the
input state to the left; the offset of the rotation
corresponds to the row number. The inverse of this
transformation is computed by performing the
corresponding rotations to the right.

2.4. MixColumns transformation:-

The MixColumns transformation operates on the
State column-by-column, treating each column as a
four-term polynomial. The columns are considered as
polynomials over GF(28) and multiplied modulo x4 +
1 with a fixed polynomial a(x), given by
 a(x) = {03}x3 + {01}x2 + {01}x + {02} .

Fig.1: Sequence of the execution of different
transformations used in AES

The coefficients of a(x) are also elements of GF(28)
and are represented by the hexadecimal values in this
equation. The inverse MixColumn Transformation is
the multiplication of each column with

a-1(x) = {0B}x3 + {0D}x2 +{09}x +{0E} modulo x4
+1
These transformations are applied in a certain
sequence to perform encryption or decryption as
shown in Fig.1. In both cases, the transformations
are grouped to so-called rounds. The number of
rounds depends on the key size. There are three
different kinds of rounds: the initial round, the
normal round and the final round.
For the decryption, the same round keys are used in
the reversed order.

3. Proposed AES Hardware Architecture:-

Due to practical importance of hardware
implementation, the different candidates are
implemented on FGPAs [4,5,6,9] and on ASICs
[7,8,10]. In [17] a cryptographic hardware module
for an AES algorithm is described that provides
complete protection against first order differential
power analysis by embedding a data masking
countermeasure at a hardware level. It uses a fully
unfolded implementation that executes one round
of encryption/decryption per cycle. In [8] a
compact and high-speed hardware architectures and
logic optimization methods for the AES algorithm
Rijndael are described. Encryption and decryption
data paths are combined and all arithmetic
components are reused. By introducing a new
composite field, the S-Box structure is also
optimized.
In [16] all the transformations are made by data unit
whereas for generating keys a separate unit is used.
Also resource sharing is done between encryption
and decryption, and also between key expansion
and the computations of AES rounds.
The AES hardware module consists of the
following four components: -

3.1 I/O Interface

The I/O Interface is used to make the data
communication with the external devices or
memory. It communicates 32-bit words in a clock
cycle with the other components and to the external
devices using the bus.

3.2 Data Unit

Data Unit performs all the AES encryption or
decryption rounds. There is no need to change the
design of the data unit for different key sizes.

International Conference of High Performance Computing (HiPC 2005)

Fig.2: Design for AES Data Unit

The design of data unit is to perform all four
transformations. The detailed circuit for data unit is
given in the Fig 2. Also the detailed design for all the
transformations has been explained below:

3.2.1 SubBytes Transformation:

In the proposed architecture, a pipelined
implementation of AES S-Box is used [15]. The
architecture of the AES S-Box is shown in fig 3.
When it gets the input it is stored into the register Res
and then in next clock cycle the transformation is
performed. The fact used for designing
combinational logic for S-Box is that GF(28) can be
seen as a quadratic extension of the field GF(24). In
this case, an element a in GF(28) is represented as a
linear polynomial with coefficients in GF(24), and
will be denoted by the pair [ah, al].

 Fig.3: Design for AES S-Box

Both coefficients of such a polynomial have four
bits. All mathematical operations applied to
elements of GF(28) can also be computed in this
representation which we call two-term polynomials.
 a = ahx + al

Multiplication and inversion of two-term
polynomials require a modular reduction step to
ensure that the result is a two-term polynomial too.
The irreducible polynomial needed for the modular
reduction is given by
 n (x) = x2 + {1}x + {e}.

 Fig.4: Inversion in GF (28)

The coefficients of n(x) are elements in GF (24) and
are written in hexadecimal notation. Their
particular values are chosen to optimize the finite
field arithmetic. The design for inversion of two-
term polynomials is Fig 4:

International Conference of High Performance Computing (HiPC 2005)

3.2.2. Shift Rows Transformation:

For shift rows transformation no separate design have
been implemented. In Shift Row Transformation
maximum of three shifts are required and by setting
the control signals accordingly and using registers
R0-R5 we can provide data for MixColumn
Transformation in required sequence as shown in Fig-
5.
In this representation no separate design is used for
the Inverse Shift Rows Transformation because in
Inv/shift rows transformation the content of data
don’t changes and in SubBytes Transformation order
of data remains the same only substitution takes place
so sequence for both of these can be changed without
effecting the algorithm as
 InvShiftRows(InvSubBytes(a)) is equivalent to
InvSubBytes(InvShiftRows(a)) .

3.2.3. Mix Column Transformation:

For mix column transformation systolic architecture
is used for matrix-matrix multiplication [11] for array
size of 4×4. In each processing element a
combinational logic for multiplication in GF (28) is
used and for addition XOR gates are used. Else than
this each cell has one register which contains the
values required corresponding to the encryption and
decryption and one register is used to store the result
of the process computation.
 In case of systolic design the data flows in the
horizontal direction whereas the result of the each
process computation flows in the vertical direction
and XORed with the previous result. The procedure
for entry of data in the systolic design for
MixColumn Transformation is shown in the Fig.5,
where blank boxes show the delay part of the circuit.

Fig.5: Systolic Matrix-Matrix Multiplication

3.2.4. Add Round key transformation:

For add round key transformation a combination of
XOR gates are used.
For flow of data according to the different rounds of
the encryption and decryption certain number of
MUX and DEMUX are used as shown in the Fig 3.

3.3. Key Unit

The key unit stores the cipher keys and also
calculates the round keys. Making small changes in
the key unit design it is possible to use it for
multiple key sizes. For calculation of AddRound
keys no separate S-Boxes are given in the key unit
only the S-Boxes of the data unit are used to save
the area of and cost of the design.
 As data unit don’t use S-Boxes while the
MixColumn and AddRoundKey transformation are
executed, the S-Boxes of the data unit are reused by
the key unit during this clock cycle this save a
significant amount of area. The cipher keys are
loaded and the round keys are calculated iteratively.
For decryption, first a key setup to be done as a
decryption uses roundkey10 in the initial round and
the cipher key is required in the final. During a key
setup, the cipher key is expanded to roundkey10
and roundkey9 to roundkey0 can be obtained
iteratively for the decryption.

3.4. Control Unit

For better efficiency of the design a vertical micro
programmed control unit is used. The width of the
control word will be equal to the total number of
the control signals in the circuit. For using the same
design only slight changes are to be made in the
micro program written into the ROM.

4. Performance:-

Using the above implementation, four clock cycles
are required to enter the 128-bit cipher key into the
key unit and after that four clock cycles are
required for each round of encryption or
decryption. Thus using the above implementation,
the minimal number of clock cycles required
performing encryption or decryption for each data
block of 128-bit is 40. Thus the throughput of the
design is 3.2-Bits per clock cycle.

4.1 Relative Work:

In the architecture presented [17] a fully unfolded
implementation is used, although it increases the
speed of the architecture but due to use of 16 Inv/S-
Boxes and a large amount of MUX the area as well
as the cost of the design increases a lot. For key
expansion also separate S-Boxes are used. In [8] the
architecture has very unbalanced combinational
paths and requires a time and area consuming

International Conference of High Performance Computing (HiPC 2005)

selector function, which is not part of the actual AES
algorithm. The SubBytes, the MixColumn and the
AddRoundKey transformation are done for one
column within one clock cycle. Additionally, in the
same clock cycle, the passes the selector function,
which seems to be another major cause of delay. In
[16] as 16 different data cells are used to perform
transformations so the number of controls increases
by a large amount that also increases the overall cost
and area.
Taking care of all these in the presented architecture
only 4 S-Boxes are used and resource sharing is done
between encryption and decryption, and between key
expansion and computation of the AES rounds.
Combinational paths used are short and balanced. A
simple design is used for ShiftRows Transformation
so the complexity and time is reduced.

4.2. Comparison in terms of speed

Among other published AES hardware
implementation the design of Satoh [8] requires 54
clock cycles to perform an encryption for 128 bits,
which leads to a theoretical throughput of 2.37 Bits
per clock cycle. The design presented in [16] requires
64 clock cycles to perform an encryption for 128-bits,
so the throughput is 2 Bits per clock cycle. Compared
to these the encryption or decryption for the present
implementation requires 40 clock cycles per128-bits,
which leads to theoretical throughput of 3.2 bits per
clock cycle. The comparison wrt the number of
cycles and throughput of various implementations
and our Systolic implementation is as shown in
Table-1.

Table-1 Comparison of Systolic Implementation and other
implementations to encrypt 128-bit block

5. Conclusion:

In this paper a highly regular and pipelined AES
hardware architecture is presented using the systolic
architecture. There is a high level of sharing between
encryption and decryption, as well as between the key
expansion and the computation of the AES rounds.
The used cipher key size and performance of the
architecture can be further improved by suitable
changes in the design. As shown in Fig 7 and 8 the

efficiency is high and also area requirement is less
for the present architecture as the combinational
paths used are small and balanced, which reduces
the delay and glitches in the design.

Fig. 7: Comparison of number of cycles.

Fig. 8: Comparison of Throughput.

International Conference of High Performance Computing (HiPC 2005)

References:

1. National Institute of Standards and Technology

(NIST), “ Federal Information Processing
Standard 197, The Advanced Encryption standard
(AES)”,

http://csrc.nist.gov/publications/fips/fips197/f
ip s-197.pdf ,2001

2. National Institute of Standards and Technology
(NIST), “ Federal Information Processing
Standard 46-3, Data Encryption Standard (DES)”,
http://csrc.nist.gov/publications/fips/fips46 ,1999

3. J. Daemen and V. Rijmen, The Design of
Rijndael. Springer-Verlag,2002

4. A.J. Elbwirt, W. Yip, B. Chetwynd and C. Paar,
“An FGPA Implementation And Performance
Evaluation of the AES Block Cipher Candidate
Algorithm Finalists,” Proc. Third Advanced
Encryption Standard Candidate Conf., pp. 13-
27,2000

5. K. Gaj and P. Chodowic, “Comparison of the
Hardware Performance of the AES Candidate
Using Reconfigurable Hardware,” Proc. Third
Advanced Encryption Standard Candidate Conf.,
pp. 40-56,2000

6. N. weaver and J. wawrzynek, “A Comparison of
the AES Candidates Amenability to FPGA
Implementation,” Proc. Third Advanced
Encryption Standard Candidate Conf., pp. ,2000

7. B. Weeks, M. Bean, T. Rozylowicz and C. Ficke,
“Hardware Performance Simulation of Round 2
Advanced Encryption standard Algorithms,
http://csrc.nist.gov/encryption/aes/round2/NSA-
AESfinalreport.pdf ,2000

8. A. Satoh, S.Morioka, K. Takano, and S.
Munetoh, “A Compact Rijndael Hardware
Architecture with S-Box Optimization,” Proc.
Advances in Cryptology-ASIACRYPT 2001, pp
239-254, 2001

9. M. McLoone and J.V. McCanny, “High
Performance Single-Chip FPGA Rijndael
Algorithm Implementation,” Proc. Workshop
Cryptographic Hardware and Embedded
Systems-CHES 2001, pp. 65-76,2001

10. A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R.
Rao and P. Rastogi, “Efficient Rijndael
Encryption Implementation with Composite Field
Arithmetic,” Proc. Workshop Cryptographic
Hardware and Embedded Systems-CHES 2001,
pp. 171-184, 2001

11. S.Y. Kung, “VLSI Array Processors,” Prentice
Hall Inc, 1988

12. William Stallings, “Cryptography and Network
Security,” Pearson Education, 2004

13. C. Kaufman, R. Perlman, and M. Speciner,
“Network Security,” Pearson Education, 2002

14. V. Rijmen, “Efficient Implementation of the
Rijndael S-Box,”
http://www.esat.kuleuven.ac.be/rijmen/rijndael/
sbox.pdf ,2000

15. J. Wolkerstorfer, E. Oswald, and M.
Lamberger, “An ASIC Implementation of the
AES S-Boxes,” Topic in Cryptology-CT-RSA
2002, Proc. RSA Conf. 2002, Feb. 2002.

16. S. Mangard, M. Aigner, and S. Dominikus, “A
Highly Regular and Scalable AES Hardware
Architecture,” IEEE Transactions on
Computers, volume 52 pp.483-
491, April 2003

17. Elena Trichina and Tymur Korkishko, “Secure
AES Hardware Module for resource
Constrained Devices”, Lecture Notes in
Computer Science, Vol no. 3313 pp 216-230.

