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Abstract: 
This Paper presents a systolic architecture for 
Advanced Encryption standard (AES). Use of systolic 
architecture has improved the hardware complexity 
and the rate of encryption/decryption. Similarities of 
encryption and decryption are used to provide a high 
performance using an efficient architecture. The 
efficiency of the design is quite high due to use of 
short and balanced combinational paths in the design. 
The encryption or decryption rate is 3.2-Bits per 
clock-cycle and due to the use of pipelined systolic 
architecture and balanced combinational paths 
maximum clock frequency for the design is quite 
high. 
 
Index terms:- Advanced Encryption standard 
(AES), Systolic Architecture, processing elements, 
regularity, combinational paths. 
 
1.  Introduction:- 
 
Advanced Encryption standard (AES) [1,12,13] is 
successor of Data Encryption Standard (DES) 
[2,12,13]. A symmetric block cipher Rijndael [3] was 
standardized by National Institute of Standards and 
Technology (NIST) as AES in November 2001.  Due 
to practical importance of hardware implementation, 
the different candidates are implemented on FPGAs 
[4,5,6,9] and on ASICs [7,8,10]. This paper presents a 
simple and regular hardware architecture based on 
systolic architecture [11] to provide a throughput of 
3.2 Bits per clock cycle for AES-128 encryption and 
decryption. 
Systolic Architecture is used for constructing high-
speed, special- purpose devices. In a systolic system, 
data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements 
before it returns to memory .A systolic system 
consists of a set of interconnected cells each capable 
of performing some simple operations, cells in a 
systolic system are typically connected to form a 
systolic array or a systolic tree. Information in a 
systolic system flows between cells in a pipelined 

fashion and communication with the memory or 
external devices occurs only through the boundary 
cells. 
The architecture uses similarities of encryption and 
decryption to provide a high level of performance 
while keeping the chip size small. The architecture 
is highly regular and scalable. The key size can 
easily be changed from 128 to 192 or 256 bits by 
making very few changes in the design. 
The paper is organized as follows. Section 2 gives a 
brief overview of the AES algorithm. In section 3, a 
summary of available AES architecture is given and 
the proposed AES hardware architecture is 
described. The performance of the architecture is 
compared with other implementations in section 4. 
Concluding remarks are given in section 5.   
 
2.  AES Algorithm: 
 
The AES takes a 128-bits data block as input and 
performs several transformations to encrypt or 
decrypt the data. In case of encryption, the input 
block is called plaintext and the returned block is 
called ciphertext. All intermediate blocks are called 
states. These are represented as two-dimensional 
array of bytes. AES encryption and decryption are 
based on four transformations that are performed 
repeatedly in a certain sequence. The number of 
repetitions is based on the key size. 
 
2.1. AddRoundKey transformation:- 
 
In the AddRoundKey transformation, a Round Key 
is added to the State by a simple bitwise XOR 
operation. The AddRoundKey transformation is 
self-inverting. 
 
2.2. SubBytes transformation:- 
 
The SubBytes() transformation is a non-linear byte 
substitution that operates independently on each 
byte of the state using a substitution table (S-box). 
This S-box, which is invertible, is constructed by 
composing two transformations: 
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1. Take the multiplicative inverse in the Galois Field 
GF(28) with the irreducible polynomial m(x)= 
x8+x4+x3+x+1. The element {00} is mapped to itself.  
2.  Apply the affine transformation (over GF(2) ):          
The inverse of SubBytes transformation, which is 
needed for decryption, is the inverse of the affine 
transformation followed by the same inversion as the 
SubBytes transformation 
 
2.3. ShiftRows transformation:- 
 
The ShiftRows transformation rotates each row of the 
input state to the left; the offset of the rotation 
corresponds to the row number. The inverse of this 
transformation is computed by performing the 
corresponding rotations to the right. 
 
2.4. MixColumns transformation:- 
 
The MixColumns transformation operates on the 
State column-by-column, treating each column as a 
four-term polynomial. The columns are considered as 
polynomials over GF(28) and multiplied modulo x4 + 
1 with a fixed polynomial a(x), given by 
         a(x) = {03}x3 + {01}x2 + {01}x + {02} . 
        

 
Fig.1: Sequence of the execution of different         
transformations used in AES 
 
The coefficients of a(x) are also elements of GF(28) 
and are represented by the hexadecimal values in this 
equation. The inverse MixColumn Transformation is 
the multiplication of each column with  

a-1(x) = {0B}x3 + {0D}x2 +{09}x +{0E} modulo x4 
+1 
These transformations are applied in a certain 
sequence to perform encryption or decryption as 
shown in Fig.1. In both cases, the transformations 
are grouped to so-called rounds. The number of 
rounds depends on the key size. There are three 
different kinds of rounds: the initial round, the 
normal round and the final round.                
For the decryption, the same round keys are used in 
the reversed order. 
 
3. Proposed AES Hardware Architecture:- 
 
Due to practical importance of hardware 
implementation, the different candidates are 
implemented on FGPAs [4,5,6,9] and on ASICs 
[7,8,10]. In [17] a cryptographic hardware module 
for an AES algorithm is described that provides 
complete protection against first order differential 
power analysis by embedding a data masking 
countermeasure at a hardware level. It uses a fully 
unfolded implementation that executes one round 
of encryption/decryption per cycle. In [8] a 
compact and high-speed hardware architectures and 
logic optimization methods for the AES algorithm 
Rijndael are described. Encryption and decryption 
data paths are combined and all arithmetic 
components are reused. By introducing a new 
composite field, the S-Box structure is also 
optimized. 
In [16] all the transformations are made by data unit 
whereas for generating keys a separate unit is used. 
Also resource sharing is done between encryption 
and decryption, and also between key expansion 
and the computations of AES rounds. 
The AES hardware module consists of the 
following four components: - 
                                     
3.1 I/O Interface 
 
The I/O Interface is used to make the data 
communication with the external devices or 
memory. It communicates 32-bit words in a clock 
cycle with the other components and to the external 
devices using the bus. 
 
3.2 Data Unit 
 
Data Unit performs all the AES encryption or 
decryption rounds. There is no need to change the 
design of the data unit for different key sizes.
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Fig.2:  Design for AES Data Unit 
 
The design of data unit is to perform all four 
transformations. The detailed circuit for data unit is 
given in the Fig 2. Also the detailed design for all the 
transformations has been explained below:  
 
3.2.1 SubBytes Transformation: 
 
In the proposed architecture, a pipelined 
implementation of AES S-Box is used [15]. The 
architecture of the AES S-Box is shown in fig 3. 
When it gets the input it is stored into the register Res 
and then in next clock cycle the transformation is 
performed.  The fact used for designing 
combinational logic for S-Box is that GF(28) can be 
seen as a quadratic extension of the field GF(24). In 
this case, an element a in GF(28) is represented as a 
linear polynomial with coefficients in GF(24), and 
will be denoted by the pair [ah, al].  
 

                                        
               Fig.3: Design for AES S-Box 
 

Both coefficients of such a polynomial have four 
bits. All mathematical operations applied to 
elements of GF(28) can also be computed in this 
representation which we call two-term polynomials. 
                         a = ahx + al 

Multiplication and inversion of two-term 
polynomials require a modular reduction step to 
ensure that the result is a two-term polynomial too. 
The irreducible polynomial needed for the modular 
reduction is given by 
                    n (x) = x2 + {1}x + {e}.     
                               

 
            Fig.4: Inversion in GF (28) 
 
The coefficients of n(x) are elements in GF (24) and 
are written in hexadecimal notation. Their 
particular values are chosen to optimize the finite 
field arithmetic. The design for inversion of two-
term polynomials is Fig 4: 
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3.2.2. Shift Rows Transformation:      
 
For shift rows transformation no separate design have 
been implemented. In Shift Row Transformation 
maximum of three shifts are required and by setting 
the control signals accordingly and using registers 
R0-R5 we can provide data for MixColumn 
Transformation in required sequence as shown in Fig-
5.                                                                  
In this representation no separate design is used for 
the Inverse Shift Rows Transformation because in 
Inv/shift rows transformation the content of data 
don’t changes and in SubBytes Transformation order 
of data remains the same only substitution takes place 
so sequence for both of these can be changed without 
effecting the algorithm as 
 InvShiftRows(InvSubBytes(a)) is equivalent to  
InvSubBytes(InvShiftRows(a)) .       
 
3.2.3. Mix Column Transformation: 
 
For mix column transformation systolic architecture 
is used for matrix-matrix multiplication [11] for array 
size of 4×4. In each processing element a 
combinational logic for multiplication in GF (28) is 
used and for addition XOR gates are used. Else than 
this each cell has one register which contains the 
values required corresponding to the encryption and 
decryption and one register is used to store the result 
of the process computation.  
  In case of systolic design the data flows in the 
horizontal direction whereas the result of the each 
process computation flows in the vertical direction 
and XORed with the previous result. The procedure 
for entry of data in the systolic design for 
MixColumn Transformation is shown in the Fig.5, 
where blank boxes show the delay part of the circuit.  
                                                                                                                     

 
Fig.5: Systolic Matrix-Matrix Multiplication 
 
3.2.4. Add Round key transformation: 
 
For add round key transformation a combination of 
XOR gates are used. 
For flow of data according to the different rounds of 
the encryption and decryption certain number of 
MUX and DEMUX are used as shown in the Fig 3. 

3.3. Key Unit 
 
The key unit stores the cipher keys and also 
calculates the round keys. Making small changes in 
the key unit design it is possible to use it for 
multiple key sizes. For calculation of AddRound 
keys no separate S-Boxes are given in the key unit 
only the S-Boxes of the data unit are used to save 
the area of and cost of the design.  
 As data unit don’t use S-Boxes while the 
MixColumn and AddRoundKey transformation are 
executed, the S-Boxes of the data unit are reused by 
the key unit during this clock cycle this save a 
significant amount of area. The cipher keys are 
loaded and the round keys are calculated iteratively. 
For decryption, first a key setup to be done as a 
decryption uses roundkey10 in the initial round and 
the cipher key is required in the final. During a key 
setup, the cipher key is expanded to roundkey10 
and roundkey9 to roundkey0 can be obtained 
iteratively for the decryption.  
 
3.4. Control Unit 
 
For better efficiency of the design a vertical micro 
programmed control unit is used. The width of the 
control word will be equal to the total number of 
the control signals in the circuit. For using the same 
design only slight changes are to be made in the 
micro program written into the ROM. 
 
4.  Performance:- 
 
Using the above implementation, four clock cycles 
are required to enter the 128-bit cipher key into the 
key unit and after that four clock cycles are 
required for each round of encryption or 
decryption. Thus using the above implementation, 
the minimal number of clock cycles required 
performing encryption or decryption for each data 
block of 128-bit is 40. Thus the throughput of the 
design is 3.2-Bits per clock cycle.  
 
4.1 Relative Work: 
 
In the architecture presented [17] a fully unfolded 
implementation is used, although it increases the 
speed of the architecture but due to use of 16 Inv/S-
Boxes and a large amount of MUX the area as well 
as the cost of the design increases a lot. For key 
expansion also separate S-Boxes are used. In [8] the 
architecture has very unbalanced combinational 
paths and requires a time and area consuming 
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selector function, which is not part of the actual AES 
algorithm. The SubBytes, the MixColumn and the 
AddRoundKey transformation are done for one 
column within one clock cycle. Additionally, in the 
same clock cycle, the passes the selector function, 
which seems to be another major cause of delay. In 
[16] as 16 different data cells are used to perform 
transformations so the number of controls increases 
by a large amount that also increases the overall cost 
and area.  
Taking care of all these in the presented architecture 
only 4 S-Boxes are used and resource sharing is done 
between encryption and decryption, and between key 
expansion and computation of the AES rounds. 
Combinational paths used are short and balanced. A 
simple design is used for ShiftRows Transformation 
so the complexity and time is reduced. 
 
4.2. Comparison in terms of speed     
 
Among other published AES hardware 
implementation the design of Satoh [8] requires 54 
clock cycles to perform an encryption for 128 bits, 
which leads to a theoretical throughput of 2.37 Bits 
per clock cycle. The design presented in [16] requires 
64 clock cycles to perform an encryption for 128-bits, 
so the throughput is 2 Bits per clock cycle. Compared 
to these the encryption or decryption for the present 
implementation requires 40 clock cycles per128-bits, 
which leads to theoretical throughput of 3.2 bits per 
clock cycle. The comparison wrt the number of 
cycles and throughput of various implementations 
and our Systolic implementation is as shown in 
Table-1. 
 
Table-1 Comparison of Systolic Implementation and other 
implementations to encrypt 128-bit block 

 
 
 
5.  Conclusion: 
 
In this paper a highly regular and pipelined AES 
hardware architecture is presented using the systolic 
architecture. There is a high level of sharing between 
encryption and decryption, as well as between the key 
expansion and the computation of the AES rounds. 
The used cipher key size and performance of the 
architecture can be further improved by suitable 
changes in the design. As shown in Fig 7 and 8 the 

efficiency is high and also area requirement is less 
for the present architecture as the combinational 
paths used are small and balanced, which reduces 
the delay and glitches in the design. 
 

 
Fig. 7: Comparison of number of cycles. 

 

 
Fig. 8: Comparison of Throughput. 
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