
1

Abstract—The idea of creating a machine which can match
or even better human intellect has been one of man’s
greatest fascinations. Chess agents such as Deep Blue and
Fritz have given glimpses of what could be expected in
future. By utilizing special-purpose hardware chips and
extensive search algorithms, chess agents have taken
machine intelligence to a newer level. AntiChess, also called
losing chess or suicide chess, is a chess variant in which the
objective of the participant is to get all his pieces captured.
In our paper, we look at the prospect of improving accuracy
and performance of AntiChess agents. Our proposed
architecture makes use of special-purpose hardware chips in
parallel with improved search techniques to do the same.
These concepts could also assist decision making in
competitive domains and solving real world problems.

Index Terms—AntiChess, Deep Blue, Quiescent Search, Singular
Extensions, Special-Purpose Hardware Chips, Parallelization

I. INTRODUCTION

t is true that powerful hardware forms the basis of a chess
computer’s capabilities. However, improved software based
search techniques and innovations in effectively

parallelizing hardware and software also play important roles.
The idea of creating a machine which can match or even better
human intellect has been one of man’s greatest fascinations. It
began with the development of a primitive chess playing agent.
Since then, a lot of research has gone into developing parallel
algorithms and hardware designs finding many applications in
complex real world problems.

AntiChess is a variant of chess in which the goal is to either
lose all of your pieces (except your king) or force your
opponent to checkmate you. Though the game seems restricted
and similar to chess, even the best chess grandmasters have
found it a tough proposition. Like chess, AntiChess has certain
features which find relevance to a number of real world
problems. The rules of the game are detailed in the appendix.

II. RELATED WORK

Quite some work has gone into design of software
approaches and special-purpose hardware in the field of game-
theory. Agents such as Deep Blue, Deep Thought, Rebel and
Fritz have revolutionized the way man looks at machines.
Deep Blue, in particular, with its judicious use of
hardware and search algorithms has set very high standards of
machine intelligence.

On the other hand, not much work has been done with
regard to AntiChess. Current research concentrates on

customizing the existing algorithms to suit AntiChess –
principal variation search, zobrist keys to name a few.

We look at the possibility of using special-purpose hardware
chips, similar to those used in Deep Blue in parallel with
adaptation of existing search algorithms to achieve an
improvement in accuracy and speed of operation of the
AntiChess agent. To the best of our knowledge, this is the first
attempt at parallelizing customized hardware with improved
searches in the field of AntiChess.

The design, implementation and simulation results of our
proposed architecture are given in the following sections.

III. DESIGN

A. Overview

The heuristic values assigned to each piece-position pair,
determines the quality of the static position evaluator in chess.
But, in anti-chess, even if the heuristic evaluator judges a side
clearly favorite, there could be a series of moves for the
opponent which involves forced captures that could change the
game altogether. It is to be noted that, in AntiChess, captures
when possible must be made as opposed to chess, where you
have a choice. As a result, we need to focus on the depth of
evaluation instead of relying heavily on the evaluation
function. It is here that, our proposal to use special-purpose
hardware concurrently with software search, has high
relevance.

The AntiChess algorithm used for static evaluation of a
position varies from that of chess, only in terms of the heuristic
values we assign to each piece-position pair. For instance, a
queen at the centre of the board, has the highest heuristic in
chess (as it controls maximum number of squares), whereas, it
has the least value in anti-chess (as it would be in a position to
capture the opponent pieces, which goes against the theme of
AntiChess. So, the way the evaluation function operates in
AntiChess is pretty similar to chess.

B. Singular Extensions

For the AntiChess software, we used the existing alpha-beta
search algorithm incorporating singular extensions. Alpha-beta
usually implies a search and evaluation of all the possible
moves to a fixed depth-say 7 or 8 ply.
An analysis of grand master chess play indicates that such
expert players would search much deeper along forcing lines
than a fixed-depth program could reach. Thus, we bring in the
idea of singular-extension. A move is called singular if the
value associated with it is much better than that of the
alternative moves evaluated unto a certain depth.

Parallelizing Special-Purpose Hardware and
Improved Search Techniques for AntiChess Agents

Kumaresh.P, Niranjan.B, Bharanidharan.A, Harish.M, V.Uma Maheswari
Department of Computer Science and Engineering, Anna University, Chennai, India

I

2

Once the singular moves have been identified, the program
then searches those lines much deeper than normal.

However, as stated before, there could be dynamic possibilities
in AntiChess which aren’t rated among the best in terms of
heuristics (non-singular), but may lead to a series of forced
captures (lying outside the current search depth) that could
prove better than the singular variations.

It is here that we bring in special-purpose AntiChess
hardware chips aided quiescent search tailor-made to identify a
series of captures and check moves. These work in parallel
with the software evaluation of singular moves and improve
accuracy. We describe these modules below:

C. Quiescent Search

Clearly, AntiChess contains many forcing tactical
sequences. If our opponent takes our knight, and we have the
opportunity to capture it, then it is mandatory that we do the
same. Alpha-beta search is not particularly tolerant of this kind
of nuance as it also searches for non-capturing possibilities
that are incidentally, against the rules of AntiChess.

If a depth parameter is passed to the alpha-beta function,
when the depth gets to zero, the search is terminated even if
there is a forced capture move ahead. We deal with this using
an adapted quiescent search.

When alpha-beta runs out of depth, we stop normal
evaluation and call the quiescent search function which is
essentially, an evaluation function that takes into account some
dynamic possibilities. Our implementation of quiescent search
looks only for captures and checks. Unlike chess, where
captures are not compulsory, this method turns out to be very
useful in AntiChess.

If it were possible to make a more accurate quiescent search
with no loss in speed, our algorithm would be stronger than it
is. When we were pondering about this possibility, we struck
upon the idea of using specialized hardware chips to aid
quiescent search, which we describe in the next section. Our
current implementation increases the depth by one up until it
reaches a board position with no captures and checks.

D. Special-Purpose Hardware Chip

“Writing” a program in silicon offers design possibilities not
available in pure software—in particular, the time complexity
for competing algorithms can change dramatically. An
algorithm unacceptable in a software design might work
perfectly well in hardware. Either the algorithm could be
trivially parallelizable in hardware without significant area
penalty, or the time-scaling factor could drop from the
instruction cycle time to simple gate delays.

We adapted the Deep Blue chess hardware, shown above, to
meet the demands of a parallel quiescent AntiChess search.
The Deep Blue chess chip is divided into four parts: the move
generator, the smart-move stack, the evaluation function, and
the search control. The smart-move stack further divides into a
regular move stack and a repetition detector. The move
generator detects dynamic moves and feeds it to the evaluation
function. The operation of the evaluation function needed for
AntiChess is the same as that of chess. But we came up with
the following design for the move generator of AntiChess:

The move generator is a 8*8 combinational logic array,
effectively a silicon chessboard capable of making checking,
check evasion or “attacking” moves directly. Each cell in the
array has four main components: a find-victim transmitter, a
find-attacker transmitter, a receiver, and a distributed arbiter.
Each cell contains a four-bit piece register that keeps track of
the type and color of the piece on the corresponding square of
the chessboard.

When enabled, the find-victim transmitter radiates
appropriate attacking signals for the resident piece. If the
square is vacant, incoming attack signals from a ray piece (a
bishop, a rook, or a queen) pass through the cell. Third-rank
squares have additional circuits to handle the two square pawn
moves. At the start of a typical move generation sequence, a
find-victim cycle executes, and all the moving side’s pieces
radiate attacking signals. The radiated attacking signals then
reach the receiver, and a vote takes place to find the lowest
valued victim. We reverse the priorities assigned to pieces in
chess.

3

However, we modify the find victim transmitter as follows:
1) If there is only one victim, and only one of our pieces

attacking it, we don’t call the find attacker cycle and the
arbitrator – but directly make the move.

2) If there are more than one victim, and only one attacking
piece, we don’t call the find attacker cycle, but call the
arbitrator, to decide the best victim.

3) In cases where we find many victims and attackers, we
call the restricted find attacker cycle and the arbitrator. By
restricted find attacker cycle, we mean that, the find
attacker is called only for checking if our attacking pieces
are being attacked by any of the opponent’s pieces.

4) In cases where there are no victims, we call the full-
fledged find attacker cycle and arbitrator cycle to generate
a move.

Parallel computation of ‘inferior’ variations as judged by the
heuristic evaluator is bound to generate many exciting
prospects that could make a mock of the heuristic evaluator.
An example of this is given in our results.

IV. IMPLEMENTATION

To evaluate the proposed design, we used the existing open-
source AntiChess agent provided by Source-Forge as the base
to implement our enhancements.

We adapted the basic alpha-beta search used in evaluation
by incorporating singular extensions. We reduced the
maximum depth of evaluation by 2 ply. Then, we identified
singular moves as the moves having the highest heuristic
(including ties). We then called a singular evaluation of these

moves to use up the time we saved by reducing the evaluation
depth.

In parallel, we simulated the operation of the designed
hardware chips. We took into account approximate gate delays
required by Deep Blue’s chess hardware. Thus, we were able
to determine the time taken for parallel evaluation of non-
singular variations.

V. RESULTS

We verified that the time consumed in quiescent search
using the hardware chip to evaluate positions, in terms of gate
delays, was much lesser than software-based quiescent search
which involved machine cycles. This clearly gave a boost in
performance in terms of speed of operation.

However, the significant improvement was with the
efficiency in evaluation. Some of the moves which led to
positions evaluated heuristically inferior, proved invaluable
when we used our design, while the same move would have
been discarded by the normal algorithm. We simulated the
following position as arising after the 10th ply (‘n’ in our case).
While the heuristic evaluator discarded the sequence of moves
that would have led to this position after 10 ply, the hardware
chip simulator examined this possibility and detected a clear
win for black (Black to move).

Here, white is considered clearly advantageous in terms of
material (in AntiChess). However, with black to play, this
sequence of moves was found by the hardware chip simulator.

1. ... Bh6 2. N*h6 Qb2 3. B*b2+ Rc3 4. B*c3+ Rd4
5. B*d4++ mates black and hence black turns out to be the
winner as he has successfully lured white into mating him.

4

VI. POTENTIAL APPLICATIONS

The research work done for AntiChess helps us model many
real world situations before actually taking a decision. Most of
these real world situations involve a number of forced moves.
This kind of modeling using the optimizations for AntiChess
helps us in taking optimal decisions in an environment with a
lot of forced constraints unlike chess because the optimizations
for chess consider a wide range of alternatives whereas
AntiChess takes into account the inherent constraints of the
problem.

We need to model stock markets before actually deciding on
investing heavily in some company. In this case, there may be
many forcing constraints such as a stock market crash or a fall
in the prices of shares of the company because of competitors’
actions. Even though the competitor takes a series of actions
which makes the prices of our shares fall, an algorithm similar
to our AntiChess application will be able to better provide us
with a actions that we need to take in order to force the
competitor on the back foot.

 In business strategy evaluation, there are many cases where
we can force an opponent to adopt a strategy. For example, in
the telecommunications industry, a player entering newly into
the market may keep his prices lower than the market average,
as a result of which the player forces other players to reduce
their prices too. Similar to this we can make a series of well
planned moves which forces the opponent to make certain
moves. Once we establish ourselves, we can then adopt
innovative strategies to increase our turn over.

VII. CONCLUSION AND FUTURE WORK

We have proposed and evaluated the parallel use of singular
search algorithms and special-purpose hardware in improving
the performance of the anti-chess agent. Specifically, our
contributions are relevant in choosing alternatives in
constrained environments which may arise in a competitive
scenario.

We are working on extending the algorithm and design to
support multiple competitors (4 player AntiChess, for
instance) which increases the complexity exponentially.

APPENDIX

Rules of the 2-Player AntiChess game:
A move is defined by the following rules:
1. "White" moves first. The players alternate in making one
move at a time until the game is completed.
2. A move is the transfer by a player of one of his pieces from
one square to another square, which is either vacant or
occupied by an opponent's piece.
3. No piece except the knight may cross a square occupied by
another piece. That is, only the knight may jump over other
pieces.
4. A piece played to a square occupied by an opponent's piece
captures that piece as part of the same move. The captured
piece is immediately removed from the board.

A player's moves are limited by the following fact: A player
is forced to capture an opponent's piece whenever possible.

If a player can take several of the opponent's pieces, he/she is
free to choose which piece to take. This limitation does not
exist in regular chess. All the pieces move exactly as they do in
standard chess. The rules of AntiChess also allow the special
moves of castling and en passant.

There are two additional moves that are native to AntiChess:
When a pawn moves to the last row on the opposing side, it

turns into a queen. (In standard chess, such a pawn can be
turned into any piece of the player's choice.)

Once per game, each player may switch the location of two
of its pieces. This switch is considered a move.
The switch is subject to the same rules as all the other moves,
e.g. you may not switch into a check. Each player is only
allowed to perform this move once per game.

REFERENCES

[1] F.-h. Hsu, “Chess Hardware in Deep Blue”, IEEE Computing in science
and engineering, January 2006, Vol.8 No.1, pp.50-60

[2] T.S. Anathraman, M.S. Campbell, and F.-h. Hsu, “Singular Extensions:
Adding Selectivity to Brute Force Searching,” Artificial Intelligence,
No. 1, 1990, pp. 99-109.

[3] D.J. Slate and L.R. Atkin, “Chess 4.5—The Northwestern University
Chess Program,” Chess Skill in Man and Machine, P.W.Frey,
ed.Springer-Verlag, 1977, pp. 82–118.

[4] AntiChess Project developer’s Forum and Documentation -
Sourceforge.net

[5] S. F.-h. Hsu, “Large Scale Parallelization of Alpha-Beta Search: An
Algorithmic and Architectural Study with Computer Chess”, Tech.
Report CMU-CS-90-108, Carnegie Mellon Univ., Pittsburgh, Pa., 1990.

[6] R. W. F.-h. Hsu, “A Two-Million Moves/s CMOS Single Chip Chess
Move Generator,” IEEE J. of Solid-State Circuits, No. 5, 1987, pp. 841-
846.

[7] S. P F.-H. Hsu, “IBM’s Deep Blue Chess Grandmaster Chips,” IEEE
Micro, vol. 19, no. 2, 1999, pp. 70–81.

[8] Steven Walczak, “Knowledge-Based Search in Competitive Domains”,
IEEE Transactions on Knowledge and Data Engineering, May 2003,
pp.734-743

