
Linux is a trademark of Linus Torvalds in the United States, other countries, or both. IBM is a trademark of IBM Corporation in the
United States, other countries, or both. BLUEGENE is a trademark of IBM Coporation in the United Sates, other coutries, or both.
Other company, product, or service names may be trademarks or service marks of others.

1

A Micro-Benchmark Framework for evaluating Performance of MPI

Manisha Dhanke, Subba Ramanna, Rakesh K Agrwal
IBM, Bangalore

{madhanke, subbodda, rkagrwal}@in.ibm.com

Abstract

Several approaches have been used to benchmark the performance of MPI point-to-point, and collective
communications calls on parallel systems. One of the major overheads incurred in the execution of parallel
programs is due to communication of information among processes. The latency and overall cost of
communication is dependent on a variety of design and configuration parameters that include the network
topology, routing, algorithms and the software protocols. Handling messages refers to how messages are
passed on from one node to the next. Hence, providing a well defined set of micro-benchmarks that can
serve as a conceptual framework for evaluating the performance of MPI communications on different
computing platforms is important. The software being presented here is a suite, which measures and
provide the basis for the analysis and performance of different point-to-point and, collective
communication calls. ,The benchmarks are designed to provide the end user with insights into the
functionality and performance of the MPI library, the transport protocols, and the interconnect topology. It
would also help provide insights into the expected behavior of MPI based parallel applications on the
underlying system..

Introduction

MPI [1] is a standard which provides a flexible environment for developing high
performance parallel applications in a portable fashion with several mechanisms for
point-to-point and collective communications. In MPI, it is often possible to express the
same application communication requirement in many different ways, using different
combinations of MPI primitives, with different types of resource overheads, and with
different logical topologies. For example, MPI provides different send and receive types,
with different synchronization and resource usage semantics. Measuring communication
overheads for different MPI library calls on a given cluster play an important role for
performance estimation of parallel applications and system benchmarks on parallel
systems. Latency and bandwidth are two fundamental metrics used to assess the
performance of a network or of a system interconnect.

Quantifying overheads plays an important role in the estimation of performance of
parallel application. Since parallelism and interaction overheads can be a significant part
of many parallel applications, quantifying and segmenting them can help in the analysis
of the performance estimation. The time to execute a parallel program depends on the
time needed for the computation (potentially in parallel), the interaction operations, and
synchronization and communication overheads. The overheads in a parallel program can
be divided into three classes: The load-imbalance overhead, the parallelism overhead, and
the interaction overhead. There are three types of interaction operations, which are
sources of interaction overhead: Synchronization, such as barrier, locks, critical regions
and events, Aggregation, such as reduction and scan and Communication, such as point-
to-point and collective communication and reading/writing of shared variables.
Understanding the overheads can help a programmer to decide how to restructure the
parallel program for maximum efficiency. Although measuring overhead may look

Linux is a trademark of Linus Torvalds in the United States, other countries, or both. IBM is a trademark of IBM Corporation in the
United States, other countries, or both. BLUEGENE is a trademark of IBM Coporation in the United Sates, other coutries, or both.
Other company, product, or service names may be trademarks or service marks of others.

2

deceptively simple, to obtain accurate measurement results is a challenging undertaking.
This is a difficult exercise due to three reasons: i) most computer systems provide coarse
time resolutions, on the order of microseconds or even milliseconds; ii) the processors in
a parallel computer, especially clusters, often operate asynchronously, not following the
beat of a common clock causing time synchronization problems. It is, usually, very
difficult to force the processors to start an operation at the same time (as an example
measuring the time for send/recv when the two operations are occurring on different
nodes and hence on different clocks) and iii) the measurement results can sometimes vary
significantly even for the same communication operation.

Motivation for the proposed micro benchmark suite

There are several popular MPI benchmarks such as IMB, SkaMPI, MPBench, Pallas
[7,8,9], but these benchmarks either cover a small set of operations covering some of the
MPI calls or else cover only few datatypes and patterns. The MPI benchmarks being
discussed in this article cover almost most of the commonly used MPI-1 and MPI I/O
operations. These benchmarks are also aimed at testing different MPI datatypes for
different collective computation operations with a very generic design of the code
wherein a datatype or operation would become an argument and same code is reused for
each benchmark. Testing the collective computation calls with different reduction
operations such as MPI_SUM, MPI_MAX brings out performance due to any
optimizations done in the software or hardware for such operations along with
communication to happen. Another important feature of these benchmarks is to cover
different physical topologies of the system and associated task geometries in the case of
collective communications and computations. The benchmarks form communicators over
the nodes of the parallel system forming physical topologies like lines, plane, cuboids and
helps in easy tabulation of performance for the various options which enables study of
performance in case of hardware modifications and connectivity changes. On systems
like BlueGene [10] where different topologies are used for different types of MPI
communications, such as tree network topology for collective calls, it is important to
observe how the latencies and bandwidths vary across different lines, planes, different
physical topologies and task geometries. This also becomes effective in case of different
large bandwidth switches changing the routing protocols for performance improvement.
The creation of communicators over such physical topologies is dependent on system,
hence, this suite provides simple and generic interface for writing code for creation of
communicators based on physical location which allows users to simple plug code as per
their requirement to support their own topologies.

Architecture and Features

The design of the benchmark suite is kept simple, modular, reusable and easy to add
additional metrics. It is flexible and can be modified with ease and according to
requirement. The input file is used to store the information in record format and each
record has details about a particular MPI call. A record with information about a MPI
call has a number of attributes such as: data type, communicator, element size range, and
its increment type and operation which is specific to MPI call MPI_Reduce and
MPI_Allreduce.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both. IBM is a trademark of IBM Corporation in the
United States, other countries, or both. BLUEGENE is a trademark of IBM Coporation in the United Sates, other coutries, or both.
Other company, product, or service names may be trademarks or service marks of others.

3

The block diagram for the overall architecture is drawn in figure below. The input file is
prepared as per each MPI call. This system reads the input file, stores all the records with
attributes. It creates all the included communicators mentioned in the input file.

From the number of records, each record is taken one by one for execution of an MPI
call. If the record is valid, the needed communicator is supplied and MPI call is executed.
The record format of the input file is shown in figure below

Following are the features of the MPI benchmarks out of which most are not available in
currently available MPI benchmarks.

1. Useful for testing the functionality, analyze the performance of MPI library as
well as the system interconnects, topologies and the transport protocols

2. Timestamps almost all important MPI point-to-point communication calls,
collective communications, collective communication and computation calls, I/O
calls.

3. Tests different physical topologies like lines, planes, cube, etc.
4. Tests the MPI calls for different message sizes. Takes care of accurate timings by

averaging and having a warm-up loop before actually starting the benchmark
timing.

5. Tests different data-types such as MPI_INT, MPI_FLOAT, MPI_CHAR,
MPI_DOUBLE and complex data-types.

6. Tests the collective computation calls with different operations such as
MPI_SUM, MPI_MAX, complex data-type operations.

7. Tests data with various strides (byte alignment).

 Input File Create all
Communicators

Take an MPI call
Record; Check
the validity of
 the Record

Repeat until the last record

 Execute the MPI call
 display the result

 Supply
communicator

Read input.txt
Store Records

MPI call Data Element Element ADD/MUL Val Comm/Top. Operation Stride
 Type Size(Min) Size(Max)

Linux is a trademark of Linus Torvalds in the United States, other countries, or both. IBM is a trademark of IBM Corporation in the
United States, other countries, or both. BLUEGENE is a trademark of IBM Coporation in the United Sates, other coutries, or both.
Other company, product, or service names may be trademarks or service marks of others.

4

8. Code is written in very generic form that there is only a single executable created
which uses a single input file for taking the list of benchmarks, operations, data-
types, and topologies.

9. The framework uses a generic style with high reusability of the code in such a
way that data-types, operations; message sizes would become just arguments in
the same code written once.

10. The framework is written in a very modular fashion that it is very easy to insert a
new benchmark, data-type, operation, or physical topology.

11. The coding of point-to-point communications allows user to either chose detailed
information about all the pairs of ranks or simple summary of all the pairs of
nodes on the system. Also, it allows to choose specific pairs of nodes which have
a specific criteria.

Following is the design of the steps followed by the suite of MPI benchmarks. The steps
highlight the modularity, reusability, effectiveness of the measurements, flexibility of the
code as well as the benchmarks.

Read the entries in input file where each entry consists of benchmark name, datatype,
minimum and maximum number of elements, increment operation, topology and operand
for the benchmark.

Call functions pertaining to creation of different topologies such as lines, planes, cube
and create an array of communicators. All processes enter these functions and as per the
criteria, they would form communicators. Developers who want to add more topologies
can just add the functions for the topologies and assign in the array.

For each entry in the input file

Based on the topology specified, get the MPI communicator from the array of
communicators assigned in step above

Get the operand, operand for benchmarks which include point to point
communications would include either NOP or DETAIL, DETAIL would give a
detailed output of the benchmark.

For the message size range specified

 Execute the benchmark for the operand and communicator specified

End For

End For

Linux is a trademark of Linus Torvalds in the United States, other countries, or both. IBM is a trademark of IBM Corporation in the
United States, other countries, or both. BLUEGENE is a trademark of IBM Coporation in the United Sates, other coutries, or both.
Other company, product, or service names may be trademarks or service marks of others.

5

The output is designed in such a way that it is descriptive in form of sentences as well as
forms a specific format wherefrom a graphic tool could easily grab the data and use for
graphing.

Implementation Details

The implementation is done using MPI programming in C programming language. This
test suite is tested on the IBM Blue Gene system and on some other linux cluster.

The table above in the support of the citation of the measure of the suite is given. In
record format element size for any MPI call varies from minimum to maximum, and the
way it increases size depends on the next parameter which can be ADD or MUL. ADD
will keep on adding till the maximum size is reached. It adds the number given in value
parameter. Similarly MUL will keep on multiplying with the value. The last entry in the
record format is stride, which considers the byte alignment in the sending buffer for an
MPI call. If this value is 1, the buffer starts reading from the second byte leaving behind
the first byte empty.

If any new operand or benchmark needed to be added, it is very easy to add with minimal
coding. And any existing benchmark’s code need not be touched while adding a new
operand or topology.

Future Work

The present work can be extended to include more complex data types in more
complicated hardware environment. The hardware environment can be forming any

 MPI Calls

Data
Types

Communicators

Operation

 Single
 Point-to-
 point
 Blocking
 calls

Send, Recv
Sendrecv,
Sendrecv replace,
Bsend, Rsend,
Ssend

MPI_INT,
MPI_FLOAT,
MPI_CHAR,
MPI_SHORT,
MPI_DOUBLE
MPI_LONG

XY-PLANE,YZ-PLANE
ZX-PLANE, X-LINE
Y-LINE, Z-LINE
HOLLOW-CUBE
MPI_COMM_WORLD

None

Single
Point-to-
point Non
Blocking
calls

Isend, Irecv,
Recv, Ibsend,
Irsend, Issend

MPI_INT,
MPI FLOAT,
MPI_CHAR,
MPI_SHORT,
MPI_DOUBLE
MPI_LONG

XY-PLANE,YZ-PLANE
ZX-PLANE, X-LINE
Y-LINE, Z-LINE
HOLLOW-CUBE
MPI_COMM_WORLD

None

Collective
Calls

Bcast, Gather,
Gatherv,
Allgather,
Allgatherv,
Scatter,
Scatterv,
Alltoall,
Alltoallv

MPI_INT,
MPI_FLOAT,
MPI_CHAR,
MPI_SHORT,
MPI_DOUBLE
MPI_LONG

XY-PLANE,YZ-PLANE
ZX-PLANE, X-LINE
Y-LINE, Z-LINE
HOLLOW-CUBE
MPI_COMM_WORLD

None

Global
Reduction
Calls

Reduce,
Allreduce,
ReduceScatter,
Scan

MPI_INT,
MPI_FLOAT,
MPI_CHAR,
MPI_SHORT,
MPI_DOUBLE
MPI_LONG

XY-PLANE,YZ-PLANE
ZX-PLANE, X-LINE
Y-LINE, Z-LINE
HOLLOW-CUBE
MPI_COMM_WORLD

MPI_SUM,
MPI_MAX,
MPI_MIN,
MPI_LAND,
MPI_BAND

Linux is a trademark of Linus Torvalds in the United States, other countries, or both. IBM is a trademark of IBM Corporation in the
United States, other countries, or both. BLUEGENE is a trademark of IBM Coporation in the United Sates, other coutries, or both.
Other company, product, or service names may be trademarks or service marks of others.

6

complex structure i.e. tree or any graph structure in two or three dimensions. The
communicators can be created out of those; the optimization of that communicator can be
analyzed. We are also planning to include one sided communication test suites and more
features from MPI 2 implementation

This work can add more shapes as communicator such as sphere or conic shape, to
determine if there might be any improvement in communication performances. Although
it has been tested on IBM Blue Gene system and other linux cluster, it can be made tested
on all types of clusters.

References

1. Message Passing Interface Standard and Forum. http://www-
unix.mcs.anl.gov/mpi

2. Kai Hwang, Zhiwei Xu, Scalable Parallel Computing: Technology, Architecture,
Programming, McGraw Hill Series in Computer Sciences, New York. (1997).

3. Paecho, S Peter, University of Sanfrancisco. Parallel Programing with MPI,
Morgan Koffman Publishers, Inc., Sanfrancisco, California (1996).

4. William Gropp, Ewing Lusk, Anthony Skjellum, Argonne National Laboratory.
Using MPI: Portable Parallel Programming with the Message-Passing Interface,
The MIT Press, Cambridge, Massachusetts, London, England. (1994).

5. HPCC Software. www.cdacindia.com
6. Argonne National Laboratory Implementation of MPI, mpich. http://www-

unix.mcs.anl.gov/mpi/mpich
7. IMB : Intel MPI Benchmarks formerly known as Pallas.

http://www.pallas.com/e/products/index.htm
8. SkaMPI : http://liinwww.ira.uka.de/~skampi/
9. MPBench : http://icl.cs.utk.edu/projects/llcbench/
10. BlueGene : http://www.research.ibm.com/bluegene/

