
1

Semantic File Retrieval in File Systems
using Virtual Directories

Prashanth Mohan, Raghuraman, Venkateswaran S and Dr. Arul Siromoney
{prashmohan, raaghum2222, wenkat.s}@gmail.com and asiro@vsnl.com

Abstract— Hard Disk capacity is no longer a problem. How-
ever, increasing disk capacity has brought with it a new problem,
the problem of locating files. Retrieving a document from a
myriad of files and directories is no easy task. Industry solutions
are being created to address this short coming.

We propose to create an extendable UNIX based File System
which will integrate searching as a basic function of the file
system. The File System will provide Virtual Directories which
list the results of a query. The contents of the Virtual Directory
is formed at runtime. Although, the Virtual Directory is used
mainly to facilitate the searching of file, It can also be usedby
plugins to interpret other queries.

Index Terms— Semantic File System, Virtual Directory, Meta
Data

I. I NTRODUCTION

F ILE and directory management is an essential and in-
evitable part of everyday computer usage. With hard disks

growing in size by leaps, we are faced with the problem of
locating files. Conventional file systems impose a hierarchical
structure of storage on the user – a combination of its location
and filename [2]. Features like ‘symbolic links’ allow a file
to be accessed through more than one path. However, a strict
enforcing of the path which does not necessarily depict the
meaning of the file itself still exists for all files.

The world has come to realize that the need for efficient
and effective file retrieval methods and thus the industry
has responded with software like Google’s Desktop Search1,
Apple’s Spotlight2, Beagle3, Microsoft’s proposed WinFS4.
Locating a file on a large hard disk is tough unless we know
exactly where the file is located.

A. Semantic Structure

The problem with the present heirarchial storage system
is that the ‘semantic’ i.e. the meta data information of the
file is not given adequate importance. The main semantic of
the stored file is the directory in which it is stored in. To
cite from O. Gorter’s thesis [2], let us take a example of
‘ /home/user/docs/univ/project/file ’. Now, the
property associated with the file is that of ‘project’ but
not as much of univ or of documents. A listing of the
/home directory does not list the file but a listing of the

Dr. Arul Siromoney is with the College of Engineering, Guindy in India
1http://desktop.google.com/
2http://www.apple.com/macosx/tiger/
3http://beagle-project.org/Main Page
4http://msdn.microsoft.com/data/ref/winfs/

‘ /home/user/docs/univ/project ’ directory lists the
file. The ‘Database File System’ [2], encounters this prob-
lem by listing recursively all the files within each directory.
Thereby a funneling of the files is done by moving through
sub-directories.

The objective of our project (henceforth reffered to as
SemFS) is to give the user the choice between a traditional
heirarchial mode of access and a query based mechanism
which will be presented using virtual directories [1], [5].These
virtual directories do not exist on the disk as separate filesbut
will be created in memory at runtime, as per the directory
name. The name of the directory itself will be a query which
the File System driver will parse and populate the virtual
directory.

II. GENERAL INFORMATION

SemFS provides an intuitive way of browsing the file
system. It lets one move within the file system based on the
file’s meta-data and attributes. The meta-data of files will not
be common. All files will possess the attributes ‘owner’ and
‘last modified date’, but a JPEG file would also choose EXIF
data like height and width as it’s meta-data, while an MP3
file would choose id3 data like length, artist, album, etc as it’s
meta-data.

A. Features

SemFS provides:

• Searching as a basic function of the File System
• Browsing the File System based on the file’s meta-data

and attributes
• An easy and intuitive way to retrieve your required file

(It is only natural that one remembers what the file is and
not where the file is)

• Use of logical operators to filter results – ˆ is AND,| is
OR, ! is NOT

• An API to create ‘views’, which can be thought of as a
persistent virtual directory. It will be updated automati-
cally and the clients notified in case of any updates

B. Usage

A typical way of using SemFS would be:

1) Mount the File System using the driver
2) Chdir into the mounted directory
3) Do ‘cd type:mp3ˆlen>3mˆartist:Mike ’

http://desktop.google.com/
http://www.apple.com/macosx/tiger/
http://beagle-project.org/Main_Page
http://msdn.microsoft.com/data/ref/winfs/

File Attribute
 Store

File 1 File 2 File 3

Plugin 1 Plugin 2

Server

Virtual Directories

File System Driver

View
 API

Client

Client

Client

Client

Client

Kernel Level

User Space

File
Retreival

 File
Notific-
ations

Meta-Data
Retreiva

File Indexing on
Attributes

Fig. 1. Design of SemFS

4) The user is now chdired into a virtual directory which
lists all MP3 files sung by ‘Mike’ of length greater than
3 minutes. (The queries will also support indexing based
on file attributes like owner, file size, etc)

III. D ESIGN

The design of SemFS is meant to be easily ‘extendable’ or
‘pluggable’. SemFS consists of 3 main components – The File
System Driver, the SemFS daemon server and the SemFS API.
SemFS works on the Server-Client architecture (Refer Figure
1).

A. File System Driver

SemFS will be a user space file system which can make
use of the FUSE5 or LUFS6 libraries. We also considered the
use of GNU/HURD translators [13], however, considering the
wide use of FUSE and its active development, we decided to
go ahead with FUSE. FUSE has bindings for a number of
languages (including 4th Generation languages like Python).

Apart from the user space daemon, SemFS also plans to
change the storage of file attributes in the File System layout
in order to optimize the indexing of files based on it’s attributes
(Refer§III-B.1). Hence, a kernel module will also be involved.
However, the File System will also work without the kernel
module, thereby keeping the project portable across most
UNIX based Operating Systems. In the case that the kernel
module is not installed, then the default ext3 based storageof
files is used. In such a case, the indexing of file based on its
attributes will not be optimized.

5http://fuse.sourceforge.net/
6http://directory.fsf.org/all/lufs.html

Fig. 2. Modified Inode Structure

B. File Store

The files and directories itself will be stored in a partitionor
a special device file. The file system will support journaling
(reusing ext3’s data storage mechanism) and will be stored
in a heirarchial fashion. Upon storing the file each time, it’s
meta-information is updated in the databases.

This meta information could either be stored in a in-kernel
database [12], [14] (the KBDBFS project aims to maintain
a Berkeley Data Base inside the kernel) or maintained in
user space. We store some of the meta data in a user level
database (a SQLite database should suffice). We store the File
Attributes as usual in the inodes of the files. There will be no
redundancy of file attributes, thereby doing away with a lot of
race conditions. This will improve the look up time for such
meta information.

1) File Attribute Storage: The internal representation of the
file is given by an inode, which contains a description of the
data layout of the file data. When a process refers to a file
name, the kernel parses the file name – one component at
a time, checks that the process has permission to search the
directory or access the file, and eventually retrieves the inode
for the file.

The problem in the current structure of the inode list is that
when a query is executed wherein we index the files based on
its attributes, we have to look into the irrelevant data of the
inodes of all files. This naturally slows down querying since
we would be wasting a lot of cycles due to unnecessary disk
reads. Say, we want to query a set of files based on its file
size, we would still need to read the other attributes like last
modified date, time, etc although what we want to read is only
the file size field. If however, we were able to read the size
information of all the files in a single (or more) block access,
the query speed would increase multi fold.

http://fuse.sourceforge.net/
http://directory.fsf.org/all/lufs.html

Fig. 3. Design of the SemFS Server

In order to read the relevant data in fewer block access, the
structure of an inode has been modified. Figure2 shows the
modified inode list. Searching based on a particular field of
the inode is optimized since, the same field of all the files are
grouped together in a minipage [15]. A minipage is a logical
separation of similar attributes in the table. The rest of the file
system structure including super block and directories remain
the same as the UNIX file system layout. The advantages of
using such a structure are:

• It maximizes inter-record spatial locality within each
column in the page, thereby eliminating unnecessary
requests to main memory without incurring space penalty

• Incurs a minimal record reconstruction cost
• It is orthogonal to other design decisions because it only

affects the layout of data stored on a single page

The offset at the end of a minipage are actually binary bits
denoting the availability of data in each record. If an item is
present bit ’1’ will be present and ’0’ if it is deleted.

2) Data Storage: The existing storage mechanism of a
typical UNIX file system like ext3 is reused. Most of the code
base will be reused but for modifications where necessary, i.e.
in places where inodes are referenced.

C. Server

The Server (Refer Figure3) is the core of the Semantic File
System. The server will translate the queries for the virtual
directories into file listings. The server is also responsible for
maintaining the ‘Views’.

1) User Space Meta Data Store: As previously explained
in §II-A , the meta-data information differs from file to file. The
file specific meta-data is extracted and maintained in special
databases by the Plugins for the server (Refer§III-C.2). We
can store the meta-data in two ways:

• Inside the File System (Refer§III-B.1) – Within the inode
List

• Outside the File System – In databases, which can be
accessed by all applications

Fig. 4. Design of the SemFS API

By storing the meta-data information outside of the file system,
we will suffer a small performance hit. So, we will store
the common file meta-data on disk in order to improve
performance, while the file specific meta information will
either be stored at the Server Database or databases maintained
by the individual plug-ins.

2) Plugins: The SemFS daemon or server supports plugins
which can define the logic for the query which is translated
into the virtual directories. The plugins can also (usually)
maintain their own database which will store the plugin
specific meta-data. The work of the plugins include:

• Registering the plugins to the server
• Process and provide logic for the respective queries
• Register call backs for specific file modifications

D. SemFS API

The SemFS API will provide ‘views’ to the applications
which are similar to Virtual Directories but they tend to be
persistent in nature. The design of the SemFS API (Refer
Figure4) supports for:

• Support for Views
• Notify clients in case of view updates
• Shield the user from the database

E. Clients

Any application which makes use of the Semantic File
System is a client. The use of the virtual directories is extended
to all applications. In the case of the Database File System [2]
and GLS Cube [5], the access to the meta data based searching
is available only by recompiling the applications to use their
custom APIs.

The SemFS API only makes the usability experience
even better by providing features like automatic updating
of ‘Views’. All applications will still be able to access the
Virtual Directories which offer a limited amount of Semantic
information.

IV. A PPLICATION OFUSERSPACE SEMANTICS

Hierarchical directory systems are very useful for organizing
files, but they can only help to a certain point. SemFS provides
the mechanism for easily accessing files based on its meta-data
from all applications. Apart from these features, there canbe
certain extensible features that would highlight on the semantic
structure storages.

A. File Tagging

Tagging is a feature that adds a user’s logical perception
about the file. Although tags do not necessarily define the
semantics of the data, they are interpreted by the end-user as
being related to a subset of his data, a subset that he logically
creates. And contrary to the traditional directories, theyare
not monotonous. It also represents a relation between files.
By this way the end-user can retrieve all documents related to
a specific title.

The tags can be either added to a particular file or a group
of files. The tag corresponding to a file are stored in the user
space database along with SemFS server (which holds some
of the file’s meta-data).

B. File Versioning

Versioning is one of the feature that SemFS can support:

• Checkpoints and
• Versioning of files

Each time a file is modified, the server will be notified by
the SemFS driver. The server checks if any of the plugins
are waiting for the event that the file has been modified.
If a call back exists, then the function corresponding to the
plugin (i.e. the call back function) is initialized. This call back
could retrieve the new file and store the diff between the two
versions.

This can be used to restore the file to previous content after
a certain period of time.

V. RELATED WORK

There are a number of projects already working in similar
areas. The need for creating a new architecture is to identify
the problems in the current implementations and increase
efficiency of retrieval.

A. GLS3

The GNU/Linux Semantic Storage System [5] is a solution
designed to facilitate the management and retrieval of the data
semantically. However, issues regarding consistency, stability
and error-recovery exist. It does not offer any sort of error
recovery. The inconsistency comes from the fact that GLScube
is defined wholly in user-space, and thus, file system events
may occur that GLScube does not record.

B. Leaftag

Leaftag7 is a new project that facilitates the tagging of
files. It does not use the file system’s extended attributes. For
example, when moving a tagged file, tagutils will index it
again. This could potentially have side effects. It also lacks
RDF features (the tag themselves cannot be nodes) and there
is no way of expressing relations other than those in the tag.

C. Beaglefs

Beaglefs implements a file system representing a live Beagle
query. The file system represents query hit results as symlinks
to the targets. It provides constant time operation using ex-
tended attributes and supports many file operations.

REFERENCES

[1] R. Pike, D. Presotto, and S. D. et al, “Plan 9 from bell labs,” AT & T
Bell Laboratories, Murray Hill, NJ, Tech. Rep., 1995.

[2] O. Gorter, “Database file system - an alternative to hierarchy based file
systems,” Master’s thesis, University of Twente, August 2004.

[3] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O. Jr, “Semantic
file systems,” inProceedings of 13th ACM Symposium on Operating
Systems Principles. Association for Computing Machinery SIGOPS,
Oct. 1991, pp. 16–25.

[4] Z. Xu, M. Karlsson, C. Tang, and C. Karamanolis, “Towardsa semantic-
aware file store,” inHotOS IX: The 9th Workshop on Hot Topics in
Operating Systems. USENIX Association, May 2003, pp. 145–150.

[5] A. Salama, A. Samih, A. Ramadan, and K. M. Yousef,GNU/Linux
Semantic Storage System, 2006.

[6] D. P. Bovet and M. Cesati,Understanding the Linux Kernel, Third
Edition. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2005.

[7] N. Murphy, M. Tonkelowitz, and M. Vernal, “The design andimple-
mentation of the database file system,” Nov. 2001.

[8] N. H. Gehani, H. V. Jagadish, and W. D. Roome, “Odefs: A filesystem
interface to an object-oriented database,” inVLDB ’94: Proceedings
of the 20th International Conference on Very Large Data Bases. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994,pp. 249–
260.

[9] D. Mazieres, “A toolkit for user-level file systems,” inProceedings of the
General Track: 2002 USENIX Annual Technical Conference. Berkeley,
CA, USA: USENIX Association, 2001, pp. 261–274.

[10] J. Nielsen. (1996, Feb.) The death of file systems. [Online]. Available:
www.useit.com/papers/filedeath.html

[11] H. Reiser. (2001, Jan.) Name spaces as tools for integrating the
operating system rather than as ends in themselves. [Online]. Available:
www.namesys.com/whitepaper.html

[12] A. Kashyap, “File system extensibility and reliability using an in-kernel
database,” Master’s thesis, Stony Brook University, Dec. 2004.

[13] Debian. (2006) Translators. [Online]. Available:
www.debian.org/ports/hurd/hurd-doc-translator

[14] C. P. Wright, “Extending acid semantics to the file system via ptrace,” in
Proceedings of FAST 05: 4th USENIX Conference on File and Storage
Technologies. USENIX Association, Dec. 2005.

[15] J. Zhou and K. A. Ross, “A multi-resolution block storage model for
database design,” inDatabase Engineering and Applications Symposium,
July 2003, pp. 22 – 31, 16 – 18.

[16] Y. Padioleau and O. Ridoux, “A logic file system,” inProceedings of
FAST 03: 2nd USENIX Conference on File and Storage Technologies.
USENIX Association, Mar. 2003.

7http://www.chipx86.com/wiki/Leaftag

www.useit.com/papers/filedeath.html
www.namesys.com/whitepaper.html
www.debian.org/ports/hurd/hurd-doc-translator
http://www.chipx86.com/wiki/Leaftag

	Introduction
	Semantic Structure

	General Information
	Features
	Usage

	Design
	File System Driver
	File Store
	File Attribute Storage
	Data Storage

	Server
	User Space Meta Data Store
	Plugins

	SemFS API
	Clients

	Application of User Space Semantics
	File Tagging
	File Versioning

	Related Work
	GLS3
	Leaftag
	Beaglefs

	References

