
M. J. Flynn 1 HiPC Dec 07

The future is parallel but it may not be
easy

Michael J. Flynn

Maxeler and Stanford University

M. J. Flynn 2 HiPC Dec 07

Outline I

• The big technology tradeoffs: area, time, power
• HPC: What’s new at the parallel processor node
• H2PC: And beyond the cluster / node for really big

applications.
• H3PC: Parallelism and representation.

M. J. Flynn 3 HiPC Dec 07

Area, Time (Performance) and
Power Design Tradeoffs

AT or AT2=k

T3P=k

M. J. Flynn 4 HiPC Dec 07

High Speed Clocking

Fast clocks are not based on technology scaling, but on
architecture/logic techniques:

– Smaller pipeline segments, less clock overhead

• Microprocessors increased clock speed more rapidly
than (SIA) predicted (from ‘99-04) …fast clocks and
short pipe segments)

• But fast clocks do not by themselves increase system
performance and they have their own costs.

M. J. Flynn 5 HiPC Dec 07

Changes in pipeline segment size

0

20

40

60

80

100

120

1996 1999 2003 2006 2010

FO
4

de
la

ys
 p

er
 c

lo
ck

FO4 gate
delays

M.S. Hrishikesh et al., “The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter Delays.” 29th ISCA: 2002.

M. J. Flynn 6 HiPC Dec 07

HiPC: Translating time into
performance & scaling the walls

• The memory “wall”
• The power “wall”.
• The segment size limit
• The only reasonable way forward is multiple

concurrent computing elements
• But we got here because of limits on the

sequential technology NOT success with
parallel technology

M. J. Flynn 7 HiPC Dec 07

Outline II

• HPC: What’s new at the parallel processor node
• H2PC: And beyond the cluster / node for really big

applications;
• H3PC: Parallelism and representation.

M. J. Flynn 8 HiPC Dec 07

HPC: Trends at the node

M. J. Flynn 9 HiPC Dec 07

The HPC node with symmetric
processors

current direction
Multiple processors (each multithreaded) on single die,
together with portion of memory space

problems
Large configurations limited by power.
Programming parallel processors to realize
corresponding speedup
Can quiescent processor / tasks be energy efficient?

M. J. Flynn 10 HiPC Dec 07

HPC: the case for accelerators
(heterogeneous processors)

• Traditional HPC processors are designed to optimize
task latency, but not large task throughput.

• Multi core/ multi thread offers more limited
possibilities.

• Structured arrays (FPGAs, GPUs, hyper “core” or
“cell” dies) offer complementary throughput
acceleration.

• Properly configured, an array can provide 10x +
improvement in arithmetic (SIMD) or memory
bandwidth (by streaming or MISD).

• Node memory has better access and bandwidth than
inter node memory.

M. J. Flynn 11 HiPC Dec 07

Accelerate large memory intensive tasks

• MISD structured computation: streaming computations
across a long array before storing results in memory.
Can achieve 100x in improved use of memory.

Structured array
Data from node

memory

computation#1

Results to
memory

computation#2

Buffer intermediate
results

M. J. Flynn 12 HiPC Dec 07

e.g. FPGA acceleration (Maxeler)
• One tenth the frequency with 105 cells per die. The magnitude of

parallelism overcomes frequency limitations.
• Advantage is gained by streaming data across large cell array,

minimizing memory BW.
• Customized data structures; e.g.17 bit FP; always enough (and

not more) precision.
• A software/tools only technology
• Need an in-depth application study to realize acceleration;

acceleration is not automatic
• Con: (FPGA): fine grain; requires more programming effort.

M. J. Flynn 13 HiPC Dec 07

e.g. Speedup using MAX 1 (FPGA) acceleration

M. J. Flynn 14 HiPC Dec 07

Summary: looking ahead at the node

• Acceleration based speedup using structured
arrays with reconfigurable interconnect.

• More attention to memory and/or arithmetic: data
compression, streaming, and RAM.

• Lower power with non aggressive frequency use.
• Programming still resembles sequential model;

but speedup requires lots of low level program
optimization. Good tools are in short supply

M. J. Flynn 15 HiPC Dec 07

Outline III

• H2PC: And beyond the cluster / node for really big
applications.

• H3PC: Parallelism and representation..

M. J. Flynn 16 HiPC Dec 07

H2PC: Trends in parallel architecture

M. J. Flynn 17 HiPC Dec 07

Some H2PC parallel processors of 40-50
years ago

Shared memory2
(typical)

various
Multics, IBM “test and set” instruction, ’63

both10CLC
(BSTJ ’70)

Message passing25UNIVAC (precursor to CLC)
(Lewis & Mellen, Symp Microelectonics. and
Large Sys., ’64)

Message passing4NBS Pilot
(Leiner et al, IFIPS ’59)

typenodespp system

M. J. Flynn 18 HiPC Dec 07

Lessons of the CLC

• 10 processors with 16x2 memory modules
• First use of “software pipelining”.
• Application: (critical) real time “transaction”

management and control
• Parallel programming is hard if you want the

performance: 4,000 man years of effort! For 2
million lines of code.

• Bigger multi processors are less reliable than
smaller configurations!

M. J. Flynn 19 HiPC Dec 07

Other lessons

• Good ideas, by themselves, don’t give
speedup:
– Functional programming
– Improved synchronization or consistency

models
– Shared memory MP and MPP
– Transactional memory

M. J. Flynn 20 HiPC Dec 07

Other lessons

• Speculation: programming models and
practice found efficient for serial processors
are probably not efficient for parallel
processors.
– Layers of abstraction hide critical sources of

and limits to efficient parallel execution
– Speedup is achieved by understanding the

whole process; application down to the gates

M. J. Flynn 21 HiPC Dec 07

Parallel programming models

• The human mind, traditional math
formulations, the programming model and
the sequential processor are all sequential

• For parallel processors unless the
application is already parallel we must
transform/translate into a parallel form

• BUT which kind (SIMD, etc.) and with
what communications and schedule?

M. J. Flynn 22 HiPC Dec 07

Parallel programming models

• In the absence of workable parallel
abstractions the alternative is generalizations
based on individually optimized applications
and application classes.

• This is a vertical type of generalization rather
than the horizontal layered approach of
sequential programming.

• Rings of cylinders instead of layered strata.

M. J. Flynn 23 HiPC Dec 07

Parallel programming issues for speedup

• Type of parallelism
• Control structure and schedule
• Memory model and access time
• Interconnect model and delay
• Arithmetic intensive applications
• Power in large configurations
• Combination

M. J. Flynn 24 HiPC Dec 07

Multiprocessor reliability

• At small feature sizes (e.g. 32 nm) large
fields promote electro migration and
dielectric fatigue.

• In performance oriented system if any
processor fails and the system fails.

• More hardware, more failures
• Use of massive amounts of commodity

hardware is a major reliability problem

M. J. Flynn 25 HiPC Dec 07

More hardware, less reliability
• Even TMR has its limitations; as time gets close to T, the

expected processor MTBF, simplex is more reliable.

M. J. Flynn 26 HiPC Dec 07

More reliable systems

• Validation of HW/SW
• Error self detect/ self correct
• Transparent, efficient reconfiguration
• Security

M. J. Flynn 27 HiPC Dec 07

Outline IV

• H3PC: Parallelism and representation.

M. J. Flynn 28 HiPC Dec 07

The speedup mismatch in as seen from the
application

• What we’d like:
messages that have
– Local communications

only
– Structured

communications
– Short data packets

• What we have: global
data memory
– Large
– Shared by all nodes
– Consistent data image

M. J. Flynn 29 HiPC Dec 07

Choosing a representation

M. J. Flynn 30 HiPC Dec 07

physics

chemistry

Functional
representation Discrete

computation

concept
(physical behavior)

continuous
function

numerical
algorithm

Typical scenario for computing results

M. J. Flynn 31 HiPC Dec 07

A few models for computation

• Shared global memory: data distributed across all
nodes

• “Systolic” computation: results stream
directionally across a grid of nodes.

• “Cellular” computation: results communicated
only within a node’s neighborhood.

M. J. Flynn 32 HiPC Dec 07

A differential equation (for example) assumes a shared
memory model. Fluid flow computation uses the memory

limited Navier- Stokes
The particle simulation model matches the data and control
flow of the “cellular” model (local interconnects only). The
cellular model avoids the memory bottleneck. Such a model
was developed by Henon et al in the ’90s for restricted CFD.

e.g. Representation in fluid flow
(CFD)

M. J. Flynn 33 HiPC Dec 07

A cellular implementation of CFD

• Alge was a FPGA based implementation of
the Henon cellular CFD

• All cellular machines are not alike; simple
cells with 6 nearest neighbors were
computationally useless.

• Computational work increases as R4; R is
the Reynolds number

• Interesting CFD involves large R and/or
trans sonic motion.

M. J. Flynn 34 HiPC Dec 07

ALGE implementation
• A robust implementation used 26 neighbors

with 24 state bits
• ALGE uses particle and momentum

conservation and isometric symmetries to
simplify cell structure

• Single cell corresponds to about 8k gates
and was realized in an FPGA.

• Cells organized as 3D Torus. Performance
is 1/frequency rate.

M. J. Flynn 35 HiPC Dec 07

So, how to move to a new representation?

• The mind doesn’t reason in a streaming or in a cellular
fashion.

• The basic laws of physics and chemistry apply both
globally and locally

• Can we transform augmented global functional
representations to get more efficient solutions.

• When the same reality is captured by two distinct
representations, we need to translate between them.

• Translations maybe possible; e.g. streaming compilers
(ASC)

M. J. Flynn 36 HiPC Dec 07

but it may not be easy… Conclusions

• We’re moving to multi core, multi processors not because
of success with parallel programming but because of
failure in scaling sequential processors.

• At the node heterogeneous processors (core plus structured
array); tuned to the application seems a good bet.

• Need to create and use a larger variety of node models
suited to a range of applications with good Area Time
Power efficiency

• The layered sequential programming model is probably
not a useful starting point for large scale parallel
programming; a better bet is the cylinder model.

M. J. Flynn 37 HiPC Dec 07

but it may not be easy… Conclusions

• There’s a lot of research ahead to effectively create
parallel translation technology.

• There is the really interesting problem of creating new
computational representations… suited to parallel
processing and then learning how to interface to them.

• Indeed, just as the field of numerical analysis came into
it’s own 60 years ago; we now may need to define a new
field of representational analysis for parallel processing
modeling and translation.

