
Compiling Irregular Accesses for the Cell Broadband Engine∗

Pramod K. Bhatotia†, Sanjeev K. Aggarwal and Mainak Chaudhuri
Department of Computer Science and Engineering,

Indian Institute of Technology,
Kanpur-208016, INDIA

Email:{pramod.bhatotia}@gmail.com,{ska and mainakc}@cse.iitk.ac.in

Abstract

A class of scientific problems represents a physi-
cal system in the form of sparse and irregular ker-
nels. Parallelizing scientific applications that com-
prise of sparse data structures on the Cell Broad-
band Engine (Cell BE) is a challenging problem
as the memory access pattern is irregular and can-
not be determined at compile time. In this paper
we present a compiler framework for the Cell BE
that provides automatic run-time support for mem-
ory communication and parallelization to indirectly
indexed applications. The memory communication
scheme generates DMA communication schedule af-
ter performing data flow analysis and facilitates the
gather and scatter operations. The run-time paral-
lelization technique judiciously partitions the data
and computational work taking into account any co-
herence issues that may arise due to irregular ac-
cesses. We evaluate the performance of our com-
piled code on a3.2 GHz Cell processor and demon-
strate a parallel speedup of up to factor of4.7 when
using eight threads.

1. Introduction and Motivation

Irregular memory access kernels frequently be-
come computational bottlenecks requiring a tremen-

∗Represents the work done in the Dept. of CSE at IIT Kan-
pur.

†Student author, currently working in the High Performance
Computing (HPC) group at IBM India Research Lab - New
Delhi.

dous amounts of computational power. Hence, it
is important to develop efficient parallel codes for
applications in which memory accesses are made
through levels of indirection. The Cell BE is an at-
tractive platform for carrying out parallel computa-
tion on a single chip with very high peak GFLOPS.
The Cell BE performs extremely well for the appli-
cations where the memory access pattern is regular.
However, parallelizing irregular accesses automati-
cally and efficiently on the Cell BE [1] is a particu-
larly challenging problem for the following reasons.

• Compiler Analysis for Irregular Memory
Accesses:The access patterns in irregular ker-
nel would be known at run-time only. This re-
sults in lack of compile-time knowledge about
where the DMA communication schedule for
gather and scatter operation is to be placed.

• Runtime Parallelization of Irregular Reduc-
tion Loops: Parallelization of loops with irreg-
ular reads and writes leads to loop carried de-
pendence that cannot be estimated at compile-
time. As a result, loops with sparse updates
may end up producing wrong results because
the local stores (LS) of the SPEs are not kept
coherent by the hardware.

• Explicit Dynamic Memory Management:
Due to the limited amount of local store mem-
ory per SPE, dynamic management of local
store memory is needed. For this, efficient loop
tiling is required to minimize the number of
bus transfers between the main memory and the



Sequential Input
       program

Dataflow Variable
Analysis 

Runtime System

SPMD Cell Code

  Compiler
Transformation

Memory
Communicat ion

     Runtime
 Parallelization

Figure 1. Overview of the compiler
framework

local store by overlapping the communication
with computation.

In this work, we have developed a parallelizing
compilation framework for sparse scientific appli-
cations as shown in Figure 1. The dataflow frame-
work, after performing flow variable analysis, de-
scribes accurately where the direct memory access
(DMA) communication schedules are to be gener-
ated for gather and scatter operations. Then com-
piler framework performs transformations to facil-
itate the data communication and the actual com-
putation. It also exploits situations to reuse com-
munication schedule for amortizing the cost of the
dataflow analysis. The run-time system provides
support for memory communication and paralleliza-
tion. The memory communication scheme provides
dynamic management of data transfers between the
LS and the main memory, thereby avoiding the pro-
grammer managed local stores. We have also imple-
mented compiler-directed multi-buffering to overlap
on-chip communication and SPE computation. The
run-time parallelization technique judiciously parti-
tions the data and computational work taking into
account any coherence issues that may arise due to
irregular accesses.

2 Dataflow Variable Analysis for the Cell
BE

To generate an optimized code for the Cell mem-
ory architecture, the compiler has to schedule ex-
plicit memory communication between the main
memory and the LS. To accomplish this the com-
piler has to transform the kernel after analyzing: (i)
the kernel data access patterns and (ii) the avail-
able memory space in the LS. The dataflow frame-
work analyzes [4] the input kernel based on run-time

Loop Flow
 Graph Builder

Result Flow
Variable 
Analysis

Bit-Vector
Library

 Global
Information

Builder

global flow
 analysis

result flow
 analysis

Dependence Analyzer

Local Flow
Analysis

Global Flow
Analysis

Result Flow
Analysis

Source
Loop 
Flow

Graph

Global 
Info-DS

c2suif
AST

(SUIF IR)

Inspector
Output

Figure 2. Dataflow analysis framework

preprocessing to build the memory communication
schedule as shown in Figure 2. During program
execution, the framework examines the data refer-
ences made by processor and calculates which off-
processor data needs to be fetched and where this
data will be stored once it is received.

3 Compiler Transformations and Code
Generation

Once the memory communication schedule is
built, then compiler transforms the input sequential
program to generate Single-Program-Multiple-Data
(SPMD) parallel model of execution as shown in
Figure 3.
1) Kernel Transformations for Double-Buffering
Scheme:In order to speed up the process, the com-
putation at SPE must be overlapped with the DMA
communication. The current implementation of our
compiler modifies the kernel’s array portions wher-
ever they are accessed, for implementing double-
buffering technique. We use unique DMA tag IDs
for each buffer of an array portion using tag manager
function. The tags are grouped based on the array
portion, using fence command for ordering within a
tag group. To ensure the ordering of DMA transfers
within the MFC, barriers are implemented.
2) Loop Transformations for Tiling: Loop tiling
is a key compilation transformation to accommo-
date both code and data within the limited size of
the LS. The tiling of the loop must ensure that at
all the times the data required must fit in the LS.
It must also minimize the number of data transfers
between the main memory and the LS thereby ex-
ploiting reuse of the data residing in the LS.



Run-Time
  Library

Loop 
Transformations

Kernel 
Transformations

Communication 
Builder

Compiler Transformations and Code Generation

Communication
Transformations

Multi-Buffering
Builder

Tiling Info
Builder

Inspector
Output

Global
Info-DS

Input 
Source
SUIF IR

suif2c

Transformed
SUIF IR

SPMD
 Cell
Code

Figure 3. Compiler transformations

3) Communication Schedule Reuse:In itera-
tive kernels, the access patterns repeat. Hence, the
same communication schedule can be reused, pro-
vided there is no possibility of the referenced arrays
having been modified. The compiler stores the com-
munication schedule computed for the first iteration,
and reuses it for subsequent iterations. To amortize
the cost of the flow analysis phase used for determin-
ing the communication requirement, the current im-
plementation of the compiler performs compile time
analysis to reuse the communication schedule [3].

4 Compiler Controlled Runtime System

4.1 Compiler-Directed Memory Com-
munication Mechanism

In this section, we describe the algorithm for per-
forming the data communication between the SPE
LS and the main memory. The data communication
is done through direct memory access (DMA) at the
program points determined after dataflow analysis.
Iterating over each program point, depending on
the type of the access, Algorithm 1 implements the
memory communication as discussed below.

1) Block Access Method for Regular Accesses:
To gather the portions that are accessed in a regu-
lar way, we need to retrieve the bounding box deter-
mined by tile size. For this we use the MFC block
read operation. The run-time system ensures that the
last 4 bits of the effective address (EA) in the main
memory and the LS address are same to avoid bus
errors. It also makes sure that the data is cache line
aligned to utilize the bandwidth effectively.
2) Bounded Method for Irregular Read Accesses:
We prepare a list of bounding boxes of all the

Algorithm 1 : Memory communication
mechanism for the Cell processor

input : Number of program pointsτ , gather-set
G, scatter-setS, dead-setD

output: Data transfer through DMA

Retain-set::R[0 : τ ]=φ

Operate-set::O[0 : τ ]=φ

for j ← 1 to τ do
DetermineG[j], S[j], andD[j] using the
dataflow analysis result obtained forjth
program point
R[j] = R[j − 1] - ( S[j] + D[j] )
O[j] = G[j] - R[j]
ω = length(O[j])
for i← 1 to ω do

if O[j][i].access type = regular
accessthen

Allocate twin buffer and exercise
Block Access Method for Regular
Accessesfor O[j][i]th portion

else
Allocate twin buffer and exercise
Block Access Method for Regular
Accessesfor the indirection
portion inO[j][i]th portion
if read-only accessthen

Bounded Method for Irregular
Read

else
Compiler Controlled Cache

end
end

end
n = length(S[j])
for i← 1 to n do

if S[j][i].access type = regular
accessthen

Write back using
Block Access Method

else
Compiler Controlled Cache

end
end

end
return

needed elements. The compiler prepares the list
of boxes and initiates the communication with the
MFC DMA-list command. The compiler prepares a
single bounding box within the same tile for dupli-
cated values of the referenced array to prevent com-



municating the same element twice. It does mem-
copy of the bounded box of duplicated values across
tiles while implementing double buffering.
3) Compiler Controlled Cache for Sparse Up-
dates: To prevent intra-SPE coherence glitches re-
sulting from sparse updates, the compiler must en-
sure that the recent copy of the data is fed to the
kernel instead of prefetching the stale copy from the
main memory. In each SPE, the compiler simulates
a direct mapped cache. If the line does not contain
the required data, the miss handler fetches the re-
quired data from the main memory. While trans-
ferring data from the cache of an SPE to the main
memory, there is a risk of data being overwritten by
the garbage values in the shared cache lines residing
in other SPEs. To avoid this, only the modified data
items are moved to the main memory, using simu-
lated dirty bits.

4.2 Runtime Parallelization of Irregular
Reduction Loops (Sparse Updates)

In our framework we have implemented the run-
time parallelization of loops as shown in Figure 4.
The run-time parallelization [2] system determines
the cross-iteration dependence relationship by ex-
amining the data access values of the referenced ar-
rays at run-time. And, then preserves the dependen-
cies in accordance with the output produced by the
dependence analysis. This is done by inserting syn-
chronization constructs at proper points to respect
the serial dependencies.

We gather the dependence information for the it-
erations that access the same memory locations. The
iteration spaces that are not part of the dependence
chain can be executed in parallel without any syn-
chronization constructs. However, the shared mem-
ory accesses present in the dependence chain use
synchronization to ensure the serial dependence. We
have implemented parallel construction of the de-
pendence chain to speedup the construction. Firstly,
the local chain is built at each SPE locally. And then,
the global chain is built using the communication
primitives (signals, mailbox, and DMA) in the PPE.

Once the dependence chain is built, each SPE
speculatively executes the iteration space assigned
to it as a do-all loop. The run-time system does the

Figure 4. Run-time parallelization of ir-
regular reduction loops

data dependence test by examining whether the ac-
cessed element is a part of the dependence chain.
This is done to determine if it had any cross-iteration
dependencies; if the test fails, then the current itera-
tion gets en-queued in a buffer. The iterations in the
buffer get re-executed serially in accordance to the
dependence chain.

5 Experiments and Results

We now present experimental results to show the
performance gain of our compiler framework. We
have measured and analyzed the behavior of three



Name Description Problem size 1 Problem size 2 Problem size 3
IRREG Irregular CFD mesh 2,048 nodes 4,096 nodes 10,240 nodes
NBF Non-bonded force (GROMOS) 8,192 nodes 16,384 nodes 32,000 nodes

MOLDYN Molecular dynamics (CHARMM) 4,096 molecules 8,192 molecules 16,384 molecules

Table 1. Scientific applications kernels

Figure 5. Performance measures

scientific applications shown in Table 1. All our ex-
periments are performed on a 3.2GHz Cell proces-
sor. The achieved speedup against number of active
SPEs are shown in Figure 5.

Results show there is no linear speedup in terms
of the number of SPEs. The reason for the perfor-
mance decrease is the overhead of synchronization
primitives for parallelization as the number of SPEs

increases.

6 Conclusions

In this paper, we have investigated compile-and
run-time support for sparse scientific computations.
We have developed automatic run-time support for
memory communication and parallelization for ir-
regular memory accesses on the Cell BE. We have
evaluated the performance of the compiler frame-
work for irregular applications. Our preliminary re-
sults demonstrate a substantial speedup on 3.2 GHz
Cell processors. Thus, we can conclude that this
compiler framework would help utilize the massive
parallelism in the Cell processor for irregular scien-
tific application while relieving the programmer of
the burden of carefully parallelizing the sequential
code.

References

[1] David A. Bader, Virat Agarwal, and Kamesh Mad-
duri. On the design and analysis of irregular algo-
rithms on the cell processor: A case study of list
ranking. InIPDPS, 2007.

[2] Ding-Kai Chen, Josep Torrellas, and Pen-Chung
Yew. An efficient algorithm for the run-time paral-
lelization of doacross loops. InSC, 1994.

[3] Ravi Ponnusamy, Joel H. Saltz, and Alok N. Choud-
hary. Runtime compilation techniques for data par-
titioning and communication schedule reuse. InSC,
1993.

[4] Reinhard von Hanxleden, Ken Kennedy, Charles
Koelbel, Raja Das, and Joel H. Saltz. Compiler anal-
ysis for irregular problems in fortran d. InLCPC,
1993.


