Design and Implementation of a Scalable, Fault tolerant, Heter ogeneous
and Secured Distributed Storage Framework

Jerre Louis C.L.J. (Postgraduate Student) Aravindan C.
Department of Computer Science Department of Computer Science
SSN College of Engineering SSN College of Engineering
jerrelouis@gmail.com aravindanc@ssn.edu.in

Abstract can be aggregated and can be treated as a storage
framework.

The design and implementation of a scalable, SCAVENGER s a distributed storage frame-

fault tolerant, heterogeneous and secured dis- .

. ’ work, which aggregates the free storage spaces
tnb_uted storage framework named SC'A‘VE'\IGER’available in the personal desktops. The personal
which aggregates the.free storage spaces of thedesktops that donate some amount of its unused
personal computers, is presented in this paper. storage space are called benefactors; the con-
The datasets are fragmented and stored with)

h replication in diff t svst The d troller of this framework is called manager and
enough replication In difierent Systems. € de- the users who either store or retrieve or delete the

Slgn.tmdmj ©s at. StCAV:Eli\I G.E.R , protofcol SUlte 10 yataset are called client. The manager keeps track
{nonlc(j)rt et activi East ! et !omllng 3 ne;/v 53]:5_" of all the meta-data information like the benefac-
em. I\jllallt's Iorage, ata retrieva dap Syi e[;: &;" tor registration details, and location of the stored
ures. Mutiple managers are usedto maxe the de- 4, qet, Although there exists work on desktop
sign scalable. A synchronization protocol is de- storage aggregation, SCAVENGER addresses the

?glned to synchrc;r\nze ;hel fdat? alrtnttJr:g the mul-< s like scalability, fault tolerance, heterogene-
iple managers. A model for fault tolerance is "\ cocriny

also designed based on the parameters like black-
out time, overlap time, latency, trust, load, repli- Multiple managers are used in the SCAV-
cation and redundancy. This is a minimization ENGER framework to support thousands of desk-
model which will be the fitness function for ge- 0P computers without any bottleneck in the
netic algorithm to make decision upon the frag- framework. Fault Tolerance is achieved by repli-

ment size, the location of storage and the numbercation. Choosing an arbitrary number of replica-
of replications. tions could waste the time for storing the dataset,

network bandwidth, and the storage space of the
benefactor systems. The need for having a fault
1. Introduction tolerant system with minimal number of replica-
tions is required. In addition to the requirement
The personal desktops are usually equippedOf having a minimal number of replication, the.
with limited disk space. There are many per- datasets are stored onto the benefac'Fors; the fail-
sonal desktops within the campuses whose stor-“_re of these benefactors should not 'hlnder the re-
age spaces are unused. An advantageous and ecdieval of _the stored fragmer)t. To fulfill _th_e above
nomical alternative to store large dataset which WO requirements an effective and efficient fault
cannot be accommodated in a personal desktogi©/€rant model is designed.
is to bind the collective storage potential of indi- The rest of the paper presents the architec-
vidual personal desktops. These unused spacesure and the design of the SCAVENGER frame-

work. Section 2 discusses related work, Section protocol suite.

3 presents the architecture, Section 4 presents the

issues tackled by the SCAVENGER framework, e
Section 5 presents the implementation details and |:|
Section 6 presents the results.

2. Related Works
I Bensfador [5) |
The FreelLoader[12] closely resembles this

work. However, SCAVENGER differs from
FreeLoader in the architecture and storage of data Figure 1. SCAVENGER Architecture
onto the benefactors. What separates SCAV-
ENGER from the other projects is its unique com-
bination of features like security, design of ge-
netic algorithm, design of protocol suite and us-
age of multiple managers.

The rationale in designing this architecture is
to have a framework that has no bottleneck and
to reduce the burden on the client. A protocol
suite is designed to monitor the joining of the new

There are many networked and distributed benefactor, to get the pulse of the benefactor, data
file systems exists some of them are NFS[9] storage, data retrieval, benefactor failures, bene-

LOCUSI[11], CODA[4], AFS[7] and GFarm[10]. factor leaving the framework and a synchroniza-

SCAVENGER is a lightweight distributed stor- tion protocol to sync'hronize the data among the

age framework and not a file system. There managers. The designs of the protocols are dis-

are many P2P systems exists some of them arg”uSSed below and each of the protocol has been

Kosha[l], Kazaa[13], PAST[6], Freenet[2] and verified using the LTSA [8] tool.

BltTorrenjt[S]. SCAVENGER s nota P2P as well. 31 SCAVENGER PROTOCOL SUITE

The detailed related works can be referred from

our previous paper [3]. 3.1.1 Joining of a new benefactor

3. Architecture and Design The benefactor generates a public and private key
and then join the manager by providing its pub-

The actors in the SCAVENGER architecture lic key (EUb), donated storage space, the location
are the Client, the Manager and the Benefactors.where the fragment is to be stored and its IP ad-
The dataset is stored in the following manner. The dress. Then the manager validates if the donated
client streams the dataset to the manager, upon restorage space is available in that benefactor. The
ceiving the size of the dataset the manager startgnanager sends the acceptance by sending its pub-
the genetic algorithm (GA) which decides about lic key (EUm) if the information provided by the
the number of rep”cation, the number of frag- benefactor is valid. The values given by the bene-
ments and the location of storage. The managerfactor and its key are then stored in a database.
fragments the dataset, digitally signs, compresses
and distributes the fragment to the corresponding
benefactor. The receiving benefactor sends the
received fragment to two other benefactors and [Boraindspace P Addess |
so on. The retrieval of the dataset is done in the wae|~ -
following manner. The client requests the stored | i |
dataset, the manager retrieves it from the bene- e
factors and streams it to the requested client. The ' ®
client may delete the stored dataset by providing
the dataset name. All these operations are per- Figure 2. Benefactor joining
formed securely. The security is taken care by the

Benefactor

Generation of Public and Private Key,

Store the key and the |
information provided

3.1.2 Pulseof the benefactor manager’s public key (EUm). The manager ac-

knowledges the client. The manager requests the
correspondlng benefactors by signing the request
and retrieve the fragment, decompresses it, verify
its signature and then stream it back to the client

by signing the file fragment.

The manager checks the pulse of the benefactor
at regular intervals. In order to show the authen-

ticity of the manager, it signs the probing request
(SIGm). The benefactor responds by signing its
response (SIGb).

Client Manager
Manager Benefactor WRG
SIGmi Sending the request] —gooucor m ?stan @star -
® | Sent Seneratq e session key

Sendthe request o the manager s;zf,'f,’;{;f,y §:::,1,"§::;
~
Response Wait for ~~[Sending T Request EUm[Ks]— Rseecsesl::;‘d ktge ‘
Received response the [" |_Received | Y
% request Wait for Sendlng
Update the|last seen value £ SIGb{ Sending the response] the ACK fhe ACK Waiting
DERbise Sending Response Sending N _ L
Updated the [Fl_Sent the file
response I request File request J
@5 requeste gend the File Request received
[

siGm[Indentlfylng the location of the fragments]
‘r’::::g‘:.r, Location of the fragments in
are identified

Send the
. . RM response Retreiving the file fragment
Figure 3. Checking the pulse [T e TWS‘”“’
rec:"e Re«rewedtherlefragmemand 1
Join therll,e fragments into a single file encrypted using the session key
Merged |
el T
3.1.3 Data Storage @

The client generates a session key (Ks) and sends
it to the manager by encrypting it with the man-
ager’s public key (EUm). The manager acknowl-
edges the client. The client streams the dataset t03 15 Benefactor taking a planned leave

its manager by encrypting it with the session key.

The manager decrypts the dataset, fragment thel he benefactor may take a planned or unplanned
dataset, digitally signs that fragment, compress leave from the framework. In the case of planned
that fragment and then stream it to the benefac- leave, the benefactor sends the request of leaving
tor by signing the data (SIGm). The benefactors t0 the manager by digitally signing it. The man-
are chosen for storing the fragments according to@der move the contents from that benefactor to a
the decision given by the GA. The corresponding New benefactor and the corresponding book keep-

Figure 5. Data retrieval

Start @ start
Client Manager
.) . 5 sich [.nfom..,m the manager] Listen to the Benefactor request
Generate the session key [~ Ssssion key Listento the Client—p—c
L4 |__generated T Informed the it aiting
__EUm[Ks] the Sl ’“mg” manager
T E::sm" SIGm[Retreiving the stored fragments]
Waitin, i
theACK | [Sending “KslAd received File fragments retreived
Ks[Streaming the file] (her:\CK I |, File streaming failed from e beReractor
tothe [Identified the fragments
File client Waiting ‘ il ek d%le(ed)s‘op SIGm[Store the file fragments into a new benefactor]

|_streamed ol . = Send ACK L

Filels 5~ “EntileFileisreceived | File fragments
— — — _ |streamed stored
- Waltfor tothe Fragmented Encrypted,
@é‘ | J\ . |manager , and Stored sIGm[Deleting the fragments] Updating the book keeping information
= ‘
\ Timeout i":;e fle sscmrstormgu the Eenefacter] Fraomen'sdelsted [Updated the book
S " keeping information

T|m=0ut receives Sered e
File Benefactor
received Perform book kee(na Okl

"’ Book Keeplng
is performed

Figure 6. Benefactor leaving
Figure 4. Data storage

3.1.6 New Manager Joining

314 DataRetrieval The administrator of the SCAVENGER frame-

The client generates a session key (Ks) which iswork may deploy any number of managers ac-
given to the manager by encrypting it with the cording to the requirement. If a system is to be

made as a manager, it needs to contact any of thel.1 Fault Tolerance

existing manager(s). The request is sent to the ex-

isting manager by the benefactor digitally signing A balance between the number of replication
(SIGb)the request. Once the request is made, arand fault tolerance is required, so an effective and
existing manager gives out the meta-data infor- efficient fault tolerant model is designed based
mation and the keys of the benefactor systems byupon the parameters like blackout tim&X),
digitally signing it (SIGm). Once the meta-data overlap time QT), latency (at), replication
information and the keys are received, the new (Rep), redundancy RT), trust and load. Black-
manager acknowledges that manager. Upon theout time is the time during which the fragment is
acknowledgment the existing manager informs not available in any of the system. Overlap time
all the benefactors about the joining of the new is the time during which the same file fragment is

manager. available in multiple benefactors. Latency is the
time taken by the benefactor to respond the man-

New Hanzger Exsngtmager ager. Replication is the number of copies made
o e e and stored in the benefactors. Redundancy is the

number of times the same fragment is stored in

[w;i;mg R a machine. Trust is the positive value given to
the benefactor, if the benefactor is available at all
i e e e el e B time whenever the manager checks its pulse. The
S @g load is the number of fragments, average size of
the fragment and space utilized in that system.
Figure 7. New manager joining {: [BT _Term + OT Term +

=1
b

Replication Term] + Y [Latency Term +

j=1
TrustTerm + Load_Term +
The benefactor may either register / store / re- Redundant Term]
trieve / delete the file fragments with / in / from ~ Where f is the number of fragments artd
the SCAVENGER framework. Once a manager is the number of benefactor systems where the
receives any of the requests, it informs all the fragments are stored.
managers in the framework by digitally signing .
(SIGm) about the transactions made between thatBT-Term = BT _Weight + BT

3.1.7 Manager Synchronization

manager and the benefactor. OT Term = OT_Weight « OT
Replication_Term = Rep
Benstactrs aragr Latency Term = Lat
S A) Trust.Term = (Trust)™!
(Tt) [Ny () Redundant_Term = RT _Weight + RT
F son s s o g Load_-Term = log(No.of Frag) +
log(AvgFragSize) +
o ((SpaceUsed/Total DonSpace) x 100) ™1
Figure 8. Manager Synchronization This minimization model will be the fitness func-
tion for GA.
4. |ssues Addressed 5. Implementation

SCAVENGER addresses the issues like fault All the three programs (manager, benefactor
tolerance, scalability, heterogeneous and security.and client) in this framework is developed us-

ing Java with Derby as the database. The im-
plementation of GA is crucial in this framework

as very quick decisions are to be made upon
the numbers of replications, number of fragments
and a place for storing these fragments. A so-

Time (Minutes)

I =
| "

p e

o Mmoo ® @

DMB [100MB |150MB | 200mB | 220 MB | 300MB | 400MB

lution in the GA is represented using a triplet e St Tne LU ECIEC LN B R &

—=— Retreival Time 0.45 108 133 154 231 2.5 3.66

< m,n,{BenefactorList} m xn >. Where

Retreival Time with 1 filed node | 0.45 11 136 1588 233 26 369

Retreiwal Time with 2 filed 051 114 137 13 235 2.6 am
nodes

m is the number of replications and n is number

File Size

of fragments. The initial population is generated
based upon the available time, available space,
redundancy and response time of the benefactor.
The fault tolerance model discussed earlier will

Figure 9. File size vs Time

References

the fitness function for GA. The selection of par-

ents are done by the Roulette wheel method. A [1]
cross over point is chosen at random and the cross
over is preformed on the chosen parents to form

a new offspring. The newly generated offspring

with least fitness value will replace the existing [
population to form a new generation. New gen-
erations are generated till the satisfying condition

is met. 3]

6. Results

This section presents the results of our pro- [4]
totype implementation. The results were taken |5
when streaming a sample dataset of the size be-
tween 50 MB and 400 MB. The time taken for [6]
storing the dataset, retrieving the dataset, retrieval
time of the dataset with a failure of 1 node and re-
trieval time of the dataset with a failure of 2 nodes
is depicted in the form of graph (Figure 9). The (7]
results were generated with 15 benefactors that
were well scattered within the Computer Science [8]
and Engineering department. The testbed config-
uration is given in Table 1.

SCAVENGER 15 Systems (15 Benefactor,
2 managers and 1 client).
Operating Systems Windows XP, Mac 10.4 and
Red Hat Linux

Processor Speed | 1.4 MHz - 2.4 GHz [11]
Storage Space 40 GB - 80 GB
Primary Memory | 256 MB - 1 GB
Dataset 50 MB - 300 MB

S110]

[12]

. . [13]
Table 1. Testbed Configuration

A. Butt, T. Johnson, Y. Zheng, and Y. Hu.
Kosha: A peer-to-peer enhancement for the net-
work file system.In Proceedings of Supercom-
puting, 2004.

I. Clarke, O. Sandberg, B. Wiley, and T. W.
Hong. Freenet: A distributed anonymous in-
formation storage and retrieval systeaNCS
2000.

C.L.J. Jerre Louis and C. Aravindan. Design
of a scalable, fault tolerant, heterogeneous and
secured distributed storage framewoth. Pro-
ceedings of ICETET'Q%ages 1313-1316.
CODA File System.
http://www.coda.cs.cmu.edu

B. Cohen. Incentives build robustness in bittor-
rent. 2003.

P. Druschel and A. Rowstron. Storage manage-
ment and caching in past, a large-scale, persis-
tent peer-to-peer storage utilitin Proceedings

of the 18th ACM Symposium on Operating Sys-
tem Principles2001.

J. H. Howard. An overview of the andrew file
system. 1998.

Labelled Transition System Analyser.
http://www.doc.ic.ac.uk/ltsa/

9] B. Nowicki. NFS: Network file system pro-

tocol specification. Network Working Group
RFC10941989.

Osamu Tatebe et. al. Gfarm v2: A grid file sys-
tem that supports high-performance distributed
and parallel data computindn Proceedings of
CHEP’04, September 2004.

G. Popek and B. J. Walker. The locus distributed
system architectureMIT Press 1985.

S. Vazhkudai et al. Freeloader:scavenging desk-
top storage resources for scientific ddtaPro-
ceedings of Supercomputing’05

The kazaa media desktop.
http://www.kazaa.com/

