
Fast Floating Point Compression on the Cell BE Processor

Ajith Padyana∗, T.V. Siva Kumar, P.K.Baruah
Sri Satya Sai University

Prasanthi Nilayam - 515134 Andhra Pradhesh, India
ajith.padyana@gmail.com, tvsivakumar@gmail.com, baruahpk@gmail.com

Abstract

Bandwidth limitations are a bottleneck in several
applications. These limitations may be (i) mem-
ory bandwidth, especially on multi core proces-
sors (ii) network bandwidth in MPI applications
(iii) Bandwidth to disk in I/O intensive applica-
tions or (iv) WAN bandwidth in remote sensing
applications that send observational data to a
central site. Fast compression of floating point
numbers can ameliorate bandwidth limitations.
Here, it is crucial for the speeds of compression
and decompression to be greater than the band-
width. Otherwise, it will be faster to send the
data directly. In this paper, we investigate the
effectiveness of a simple Stride Based Compres-
sion Algorithm to deal with this problem, on the
Cell BE processor. We find that our approach
is not fast enough for dealing with the memory
bandwidth limitations. However, it can be effec-
tive in dealing with the other three limitations.

1 Introduction

The Cell processor contains a PowerPC core,
called the PPE, and eight co-processors called
SPEs. The SPEs are meant to handle the bulk of
the computation bottleneck. They have a com-
bined peak speed of 204.8 GFlops/s in single pre-
cision. Each SPE is capable of sending and re-
ceiving at 25.6 GB/s.

However, access to main memory is limited by
25.6 GB/s total. If all 8 SPEs access main mem-

∗Student Author: Ajith Padyana

ory simultaneously, then each sustains band-
width of just 3.2 GB/s which is much less than
25.6 GB/s in each direction.

In I/O intensive applications, the bandwidth
to disk is often a bottleneck, because disk access
is relatively slow. WAN bandwidth limits can
pose a problem in a different class of applications
- when observational or experimental data such
as from a satellite, are sent to a remote location
for storage or analysis.

The above bandwidth limitations can be ame-
liorated by sending compressed data, because
this reduces the amount of data being transmit-
ted. It incurs an additional computations over-
head of compression and decompression. How-
ever, with the abundant computation power in
emerging architectures, such as cell and GPUs,
it appears an attractive alternative .

The aim of this paper is to evaluate the po-
tential of this approach on the Cell Processor.
The speed of compression and decompression is
critical here, because sending the data directly
will be preferable if the overhead of compres-
sion is high. We, therefore, use an algorithm
that provides fast compression, even though the
compression achieved is less than that of popular
compression algorithms.

We restrict our focus to compression of 32 bit
floating point numbers, because single precision
computations is much faster on the current gen-
eration of the cell processor.

We have used a very simple algorithm, which
sacrifices some compression for speed. In this,
it predicts the next value based on recently ob-

1

served values. If the prediction is fairly accurate,
then an exclusive-OR of it with the observed val-
ues which yield several zeros in most significant
bits. These can be compressed efficiently.

There are two methods for implementation
of any compression algorithm (i) Synchronous,
where all the data is first produced, then com-
pressed and transmitted, and finally decom-
pressed. (ii) Pipelined implementation, where
the data is continuously produced, transmitted
and decompressed. We evaluate our approach
assuming a pipelined scheme.

We evaluate our scheme on a variety of
data, such as sparse matrices from University of
Florida collection[2], MPI messages from NAS
Parallel benchmark[1], observational data from
satellites[1] etc. The Compression achieved
by our scheme is consistently worse than that
of minigzip. However, our approach yields a
throughput of a few GB/s, while the perfor-
mance of minigzip is an order or two in mag-
nitude lower. This makes our approach effective
in dealing with network and disk bandwidth lim-
itations, for those applications where we get sig-
nificant compression. The low speed of minigzip
makes if infeasible for the bandwidth problem
that we are addressing.

2 Related Work

There has been much work performed on float-
ing point compression. Many of these are based
on predicting the next value based on previous
values, and then compressing the result of the
difference in the bit patterns of the predicted
and actual values. Many of the schemes differ
in how the prediction is made and a few other
implementation details.

Engelson, et. al. [3] use extrapolation to pre-
dict the next value. The FCM scheme uses cer-
tain bits of previous observed values to predict
the next value. The DFCM [6] is similar, except
that it predicts the difference in values, rather
than the values themselves. The FPC algorithm
[1] uses a combination of FCM and DFCM. It

considers both and uses the better choice. It
uses one bit of the code to store the choice used.
The scheme we have used can be considered a
simple special case of any of the above schemes.

3 Stride-Based Floating Point
Compression Algorithm

We first describe a simple Stride based algo-
rithm for compression and decompression and
then later mention some modifications to make
efficient. The input to the compression algo-
rithm is an array of floats, which we treat as
an array of integers. We first try to predict the
next, say i + 1th, data. This is done assuming
that the difference between the i + 1th and the
ith data is the same as the difference between the
ith data and i − 1th data. These differences are
called Strides. The predicted value is exclusive-
OR with the actual value. If the most significant
bits agree, then we will obtain several leading
0 bits. We wish to store the most significant
nonzero bit and all the bits less significant than
that bit. We will store the code that tells us how
many bits were zero. In order to reduce the size
of the code , we can coarse grain this compression
by discarding the leading zero bytes, rather than
leading zero bits. The decompression algorithm
reverse the process. The algorithm is given in the
figure for both compression and uncompression.

Figure 1: Simple Stride based algorithm for
Compression

2

Figure 2: Simple Stride based algorithm for Un-
compression

There are two modifications we make to the
above procedure. The first is changing the stride
used for prediction. Note that the prediction for
each iteration depends on the result of the pre-
vious iterations. This data dependence makes
vectorization more difficult. So, we have not
used vectors in both compression and uncom-
pression. A stride of four improves the compres-
sion achieved. Note that 2 bit code can have
four possibilities. However, the number of lead-
ing zero bytes can have five possibilities : 0-4.
we have taken different possibilities : 0, 2, 3, 4
and 0, 1, 2, 3 and we have noticed that i = 3 is
very unlikely and in five cases did i=1 and i=2
make a major difference. We have to take care
of storing the 2 bit code for each floating point
number.

Figure 3: Theoretical compressed size (as a func-
tion of the original size) for different strides

Figure 4: Schematic of data encoding

4 Implementation of Floating
Point Compression

Given the data, divide the data into blocks, and
compress independently. This will enable the
SPE’s in a parallel implementation to work on
different block independently. Block is chosen
such that the data for a block can be brought in
single DMA that is the data should be atmost
16KB, and the compressed data can be written
back in a single DMA, even in the worst case.

As shown in the figure, Compressed data con-
tains a sequence of pairs, where each pair is the
metadata followed by the compressed data for
that block. Metadata contains size of the com-
pressed and uncompressed data, followed by a
few bytes reserved for possible use later. This
is followed by the code for all the data in that
block. Followed by aligning the compressed data.
There is a significant improvement in perfor-
mance for DMA puts that are 128 byte aligned
compared with 16 byte aligned.

Compression is straight forward. The SPE
gets data, compresses it, and writes it back to
main memory. Decompression is little more in-
volved, because the location and size of com-
pressed data for each block is unknown. The
PPE quickly computes for the starting location
of each block using the metadata entries specify-
ing compressed data sizes. SPE gets this index
and uses it to determine the starting location
for each block. Once the compressed data is re-
ceived, the SPE uses the uncompressed data size
field in the metadata to determine the amount

3

of data to decompress.
In the parallel implementation, each SPE inde-

pendently compresses and decompresses blocks
of data. The blocks are assigned to SPEs in
cyclic manner. For example, if we take 8 SPEs
and taking 2 blocks at a time i.e. C = 2, where C
is code specifying the number of adjacent blocks
that an SPE can handle, then SPE 0 will get
blocks 0, 1, 16, 17, 24, 25 and so on. Cyclic dis-
tribution is important because we are assuming
a pipelined scheme.

Figure 5: Optimization of the computational
phase of Compression and Decompression

Figure 6: Fraction of time spent in different
phases of the implementation (1) Compression,
single buffering, (2) Compression, multi buffer-
ing, (3) Decompression, single buffering, (4) De-
compression, multi buffering

5 Optimization

We manually unrolled the loop four times, we
could observe the compiler was able to improve

the performance substantially. We also vector-
ized the compression code by hand, but obtained
only a slight improvement in performance. We,
therefore, did not vectorize the decompression
code by hand. We next compare the effect of
multi buffering. The code was initially single
buffered. We would then put the compressed
data back to main memory, and block until that
DMA was completed. The DMA get meet our
expectations. However, DMA put times are
much greater as shown in the figure .

Figure 7: Sample data showing how the cost of
DMA puts varies in the application, for data of
size 16KB

6 Conclusions and Future
Work

We have investigated the effectiveness of fast
floating point compression in ameliorating differ-
ent types of bandwidth limitations. Our result
indicate that this proposal that this approach
would not be effective in dealing with main mem-
ory bandwidth limitations.

In future work, we wish to improve the com-
pression algorithm, so that we obtain good com-
pression on a greater variety of applications. We
will use time series analysis to perform the better
prediction. Now, most of the time taken is for
storing the compressed and uncompressed data
rather than in the actual prediction. So, we can
afford to use the algorithm with better predic-
tion. It will also be useful to evaluate its effec-
tiveness in other types of architectures, such as

4

GPUs, and also on the latest generations of cell
blades.

7 Acknowledgments

We thank IBM for providing access to a Cell
blade, and to the Cell center for competence at
Georgia Tech. Most of all, we express our grati-
tude to Sri Sathya Sai Baba, The Chancellor of
Sri Sathya Sai University, for bringing all of us
together to perform this work.

References

[1] M.Burtscher and P.Ratanaworabhan. High
throughput compression of double-precision
floating point data. In Proceedings of
the IEEE Data Compression Conference
(DCC),2007

[2] T.A.Davis .The University of florida sparse
matrix collection .Technical report, Univer-
sity of Florida,2007

[3] V.Engelson, D.Fritzson and P.Fritzon. Lose-
less Compression of high-volume numerical
data from simulations. In Proceedings of the
IEEE Data Compressions Conference (DCC
), pages 574-586,2000

[4] J. Ke, M . Burtscher, and E . Speight. Run-
time Compression of mpi messages to im-
prove the performance and scalability of par-
allel applications. In Proceedings of SC2004,
pages 59-65 ,2004

[5] M.Kistler, M.Perrone, and F.Petrini. Cell
multiprocessor communication network :
Built for speed. IEEE Micro,26:10-23,2006

[6] P Ratanaworabhan, J .Ke and M . Burtscher
.Fast Loseless Compression of scientific float-
ing point data. In IEEE Data Compression
Conference (DCC) pages 133-142,2006

[7] M.K Velamati, A.Kumar, N.Jayam, G
.Senthil Kumar, P.K. Baruah, S Kappor, R

Sharma and A Srinivasan . Optimization of
collective communication in Intra Cell MPI
. In Proceedings of the 14th IEEE Interna-
tional Conference on High Performance Com-
puting (HiPC), pages 488-499,2007.

5

