
Parallelizing Two Dimensional Convex Hull on NVIDIA GPU and Cell BE

Srikanth, Durga Prasad Reddy
Kishore Kothapalli, R.Govindarajulu, P.J.Narayanan

International Institute of Information Technology, Hyderabad
Gachibowli, Hyderabad, India – 500 032.

Email:{srikanth_s@students., durgaprasad_b@students.} iiit.ac.in
{kkishore@, gregeti@, pjn@} iiit.ac.in

Abstract

Multicore processors are a shift of paradigm in
computer architecture that promises dramatic increase
in performance. But they also bring complexity in
algorithmic design. In this paper we describe the
challenges and design issues involved in parallelizing
two dimensional convex hull on both CUDA and Cell
Brodband Engine (Cell BE). We have parallelized
the quickhull algorithm for two dimensional convex
hull. The major advantage of this algorithm is that
interprocessor communication cost is highly reduced.

1. Introduction

The convex hull[1] of a set Q of points is the
smallest convex polygon P for which each point in Q
is either on the boundary of P or in its interior. Other
problems in computational geometry like halfspace
intersection, Delaunay triangulation, Voronoi diagrams
etc can be reduced to the convex hull. The problem of
finding convex hulls also finds its practical applica-
tions in Geographical Information Systems (GIS)(e.g.
computing accessibility maps), visual pattern matching
etc.

The GPU is a massively multi-threaded arch itecture
containing hundreds of processing elements or cores.
Each core comes with a four stage pipeline. Eight
cores are grouped in SIMD fashion into a symmetric
multiprocessor (SM). Hence all cores in an SM execute
the same instruction. Each SM has limited shared
memory(16 KB).The GTX280 has 30 of these SMs,
which makes for a total of 240 processing cores.

The Cell BE processor is a joint venture of IBM,
Sony and Toshiba. It is a heterogeneous multicore
processor and has been of a great importance in High
Performance Computing due to the high FLOP rates it
provides. It consists a PowerPc core(PPE) which con-
trols eight SIMD cores called Synergistic Processing
Elements(SPEs) which are computational powerhorses.
There is only limited amount of local store memory
(256 KB)in each SPE.

1.1. Convex Hull Algorithm

There are various sequential approaches for com-
puting the convex hull in two dimensions. Some of
them are Graham Scan[2], Divide and Conquer[3],
Quickhull[4] etc. In Graham Scan algorithm, the points
are sorted based on their x co-ordinate and a stack
is used for calulating the hull. This approach has
time complexity of O(n log n). In Divide and Conquer
approach, the given points are sorted based on their x
co-ordinates and then the convex hulls of first half set
of points and the other half set of points are recursively
computed and they are merged to get the final convex
hull. The approach has time complexity of O(n log n).
In the parallel equivalent[5] of this algorithm, parallel
search is used during merging phase. We haven’t used
this approach since parallel approach requires irregular
global memory accesses. The quickhull algorithm is
so named because of its similarity to the quicksort
algorithm. The algorithm is recursive, and, at each
step of the algorithm, points are identified which are
internal, and therefore never again are needed for the
vertices of the convex hull. The algorithm has an
average time complexity of O(n log n) and worst case
time complexity of O(n2). It proceeds by finding the
bottommost, topmost, leftmost and rightmost points in
the set. These must lie on the convex hull and consider
a quadrilateral which is drawn with these four points as
its vertices. Then, each edge is examined to see if point
lies outside the edge. The point which lies furthest
outside the edge must lie on the convex hull; therefore
the original edge is removed, and new edges to the
new exterior point are added. This process is repeated
recursively for each of the four edges of the original
quadrilateral. In our implementation of the parallel
convex hull, we parallelized the iterative version of
this algorithm.

We will first introduce the notation we will follow
and the sequential iterative version of the quickhull.
Given S, a set of input points, the quickhull algorithm
finds the leftmost(min) and rightmost(max) points
and adds them to ANS array, where ANS contains
the points lying on the convex hull. In any iteration,

Figure 1. Illustration of the execution of first itera-
tion of the given algorithm

Figure 2. Illustration of the execution of second
iteration of the given algorithm

P denotes the set of points to be processed in the
current iteration and Pnext denotes the points to be
processed in the next iteration. At the end of every
iteration, Pnext is copied to P and Pnext is emptied.
The ANS array contains the points lying on the convex
hull which are discovered till the current iteration. The
points of ANS array divides the set P into |ANS|
disjoint subsets, where ith subset contains all the points
whose x co-ordinates are greater than or equal to x
co-ordinates of ANSi and less than x co-ordinate of
ANSi+1(in fig 1 and fig 2, these subsets are shown
along with their labels while finding lowerhull). The
LABEL array is of size |P |, where LABELp gives
the label of pth point. The DIST array is of size
|P |, where DISTp gives the perpendicular distance of
pth point on line joining ANSk and ANSk+1 where
k = LABELp. MAX array is of size |ANS|, where
MAXi is the pth point of the given input, whose
label is i and DISTp is maximum among all the
points belonging to the ith partition. The average time
complexity of this parallel algorithm in PRAM model
is O(n/p log n) where p is the number of processors.

Algorithm 1 Sequential Iterative 2D Quickhull
1: procedure QUICKHULL(S)
2: for i← 1, |P | do
3: LABEL[i]← 0
4: end for
5: ANS[0]← min
6: ANS[1]← max
7: repeat
8: for i← 1, |P | do
9: cur ← P [i]

10: label← LABEL[i]
11: l← ANS[l]
12: r ← ANS[l + 1]
13: s← (r.y − l.y)/(r.x− l.x)
14: d← s ∗ (cur.x− l.x)− cur.y + r.y
15: DIST [i]← d
16: end for
17: for i← 1, |ANS| do
18: maxdist[i]← 0
19: state[i]← 0
20: end for
21: changed← false
22: for i← 1, |P | do
23: l = label[i]
24: if maxdist[l] > DIST [i] then
25: MAX[l]← P [i]
26: maxdist[l]← DIST [i]
27: state[l]← 1
28: changed← true
29: end if
30: end for
31: res← 0
32: for i← 1, |ANS| do
33: res← res + state[i]
34: state[i]← res− state[i]
35: end for
36: for i← 1, |P | do
37: if DISTi ≥ 0 then
38: Pnext ← Pnext

⋃
Pi

39: end if
40: end for
41: P ← Pnext

42: for i← 1, |P | do
43: l← LABEL[i] + state[LABEL[i]]
44: if P [i].x ≥ ANS[l + 1].x then
45: LABEL[i]← l + 1
46: else
47: LABEL[i]← l
48: end if
49: end for
50: for i← 1, |ANS| do
51: ANS ← ANS

⋃
MAX[i]

52: end for
53: until ¬changed
54: end procedure

Srikanth and Durga Prasad Reddy 2

2. Methodology followed on CUDA

In the above sequential algorithm, steps 22-30 will
find a set of |ANS| points where ith point is the
point having maximum perpendicular distance among
the set of points which are having their label value
equal to i. This step can be efficiently implemented
in parallel if the points are sorted based on their label
values by using matrix segmented scan[6]. So, we have
slightly modified steps 36-39 of the algorithm to sort
the points based on their label values. While removing
the points with the negative perpendicular distance, we
have also rearranged the points based on their label
values. This modification can be implemented very
efficiently (the reason is that the points belonging to
one partition will split into atmost two partitions and
no other point can be in these new partitions) using
two prefix scans[7]. By making the above choice,we
are also able to implement steps 7-10 more efficiently
by using shared memory because the points are sorted
based on their label values, we can load the required
chunk of ANS array in advance into shared memory
instead of loading total ANS array.

2.1. Implementation of quickhull on CUDA

Each point is a structure and contains two floats
(one for storing x co-ordinate and another for storing
y co-ordinate). We have used structure prop which
contains three floats one for storing distance, other for
storing label value and the other used during segment
scan. The different phases of implementation are as
follows:
1)We have divided the given input into chunks of size
512 and each chunk will be processed by a block.
3)We have implemented steps 5 and 6 by using two
prefix scans[8] (taking max operator once and min
operator once).
4)We have implemented steps 8-16 as follows. As the
points in each chunk are ordered on the basis of the
label values, we have loaded only the required chunk
of the ANS array into the shared memory.
5)We have implemented steps 22-30 using matrix
segmented scan approach[6].
6)We implemented steps 32-35 and 50-52 by using
one prefix scan.
7)We implemented the steps 36-47 along with the
modifications we mentioned in methodology followed
on CUDA as follows:
a)for each label value, the number of negative points
in it is determined by using one prefix scan.
b)for each label value, the indices(by using another
prefix scan) of all the points which will get distributed
in the left sub partition will be determined and they
are copied to Pnext and their labels are updated.
c)for each label value, the indices(by using the result
of the above two prefix scans) of all the points which

Figure 3. The times taken for calcuating the con-
vex hull on CPU and GPU.

Figure 4. The speedup obtained on NVIDIA GPU
for different sizes of input.

will get distributed in the right sub partition will be
determined and they are copied to Pnext and their
labels are updated.

2.2. Experimental results on CUDA

We have generated input using rand() function. The
various implementations discussed so far were tested
on a PC with Intel Core 2 Quad Q6600 at 2.4 GHz, 2
GB RAM and an NVIDIA GTX 280 with 1 GB of on
board Graphics RAM. The host was running Fedora
Core 9, with an NVIDIA Graphics Driver 177.67,and
CUDA SDK/Toolkitversion 2.0. These algorithms are
also compared to the sequential quickhull algorithm
running on the same PC(Q6600)-hereby referred to as
the CPU Sequential Algorithm.

3. Implementation on Cell-BE

We have used structures, with elements to hold the
addresses of inputs, outputs, number of elements per
SPE etc. Since this blocks size should be a multiple
of 16 bytes, some padding elements are also added.

Srikanth and Durga Prasad Reddy 3

point structure is used to hold the inputs along
with their labels and the perpendicular distance. The
structure maxvalue is used to hold the maximum
values returned by the SPE’s along with their label
values and position in the point structure. We divided
the input points into k sets where k is the number
of SPEs being used. Based on the number of SPE’s
we are using, we calculated the effective addresses
of inputs and outputs for each SPE, loaded them in
the control block and invoked all the SPE’s. In SPE,
these points are loaded in chunks where the number
of chunks is dependent on the number of elements
being processed by SPE at a time and chunk size
(declared by us). The major steps in the sequential
algorithm and the corresponding implementaion we
followed on CellBE is as follows:
Steps 8-16: We should have the entire ANS array in
local store to calculate the perpendicular distance. So,
for each SPE these points are loaded once for each
iteration, and distances are calculated.
Steps 22-30: Each SPE computes the points with
maximum perpendicular distance in the chunk
processed by it and returns them to the PPE. Now,
in the PPE, we have merged these points sent by all
SPEs to get MAX array
Steps 36-40: For negative points removal, we did it in
PPE only, because for each SPE the output addresses
are fed apriori, and if we remove the negative points
in the SPE itself, since we don’t know how many
points we are going to remove, we cannot clearly
specify the output address to it and to its next SPE or
chunk. Hence output addresses for each SPE will not
be contiguous.
Steps 42-49: Using the new points added to the ans
array, we change the label of each point in the SPE
itself, in the next iteration.
Steps 50-52: We have implemented these steps directly
in the PPE.

3.1. Experimental results on Cell-BE

We have generated input using rand() function. The
various implementations discussed so far were tested
on a CellBE blade server. The host was running Fedora
Core 8, with Cell-BE SDK/Toolkit. These algorithms
are also compared to the sequential quickhull algorithm
running on the same server but using only PPE-hereby
referred to as the PPE Sequential Algorithm. We have
implemented the above algorithm with single buffer-
ing, double buffering, single buffering with SIMD and
double buffering with SIMD. We observed, for very
small data sets 1 SPE is faster than 8 or 16 SPEs
but, as we increase the data set size, after some point
8 SPEs did better than 1 or 16 and further increase
in data size utilizes the cell architecture completely
making 16 SPEs to run faster than 8 or 1. Since

Figure 5. The time taken for computing lowerhull
by different number of SPEs for different sizes of
inputs

Figure 6. The times taken for computing convex
hull by different approaches and PPE.

there isnt much computation involved in the algorithm
(only perpendicular distance calculation and finding
maximum out of them) the time taken by the double
buffering is comparable to that of single buffering, and
also as we have used SIMD and loop unrolling to
minimize this computation time, only a little difference
can be seen in the timings of all the four approaches
we implemented. Our double buffering is not faster
than single buffering because some conditions[9] are to
be satisfied for double buffering to perfrom faster and
these conditions are not satisfied in the experiments we
conducted for taking the readings.

4. Future Work

In our implementation on CellBE, we observed
that the removal of points with negative perpendicular
distance consumes 30% of total execution time. This
step is not parallelized in our implementation because
we don’t know the number of negative points in each

Srikanth and Durga Prasad Reddy 4

Figure 7. The speedup obtained on CellBE for
different sizes of input.

chunk in advance. We can solve this problem by using
SPE to SPE communication or by using prefix scan
and using the result of prefix scan for removing the
points with negative perpendicular distance. In future,
we wish to be extend the algorithm for calculating
convex hull to higher dimensions.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms,
Second Edition. MIT Press and McGraw-Hill, 2001.
ISBN 0-262-03293-7. Section 33.3: Finding the convex
hull, pp.947957.

[2] Graham, R.L. (1972). An Efficient Algorithm for Deter-
mining the Convex Hull of a Finite Planar Set. Informa-
tion Processing Letters 1, 132-133

[3] F.P.Preparata and S.J.Hong.Convex hulls of finite set of
points in two and three dimensions. Commun. ACM,
20:87-93,1977.

[4] Barber, C. B., Dobkin, D. P., Huhdanpaa,H. T., The
Quickhull algorithm for convexhull, GCG53, The Ge-
ometry Center,Minneapolis, 1993

[5] Michael T. Goodrich, Randomized fully-scalable BSP
techniques for multi-searching and convex hull con-
struction, Proceedings of the eighth annual ACM-SIAM
symposium on Discrete algorithms, p.767-776, January
05-07, 1997, New Orleans, Louisiana, United States

[6] Y. Dotsenko, N. Govindaraju, P. Sloan,C. Boyd, and J.
Manferdelli. Fast Scan Algorithms on Graphics Proces-
sors.In Proceedings of the 22nd Annual International
Conference on Supercomputing (ICS),pages 205213.
ACM New York, NY,USA,

[7] Harris, M., Sengupta, S., and Owens, J.D. Parallel Prefix
Sum (Scan) with CUDA.GPU Gems 3, Hguyen, H. (Ed.).
Addison-Wesley, Aug. 2007, ch. 39.

[8] CUDA Data Parallel Primitives Library.http:
//www.gpgpu.org/developer/cudpp/rel/rel gems3/html/
index.html

[9] IBM Systems Software Information Center.http://publib.
boulder.ibm.com/infocenter/systems/scope/syssw/topic/
eiccn/alf/alfprog0/insidedoublebuffering.html

Srikanth and Durga Prasad Reddy 5

