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ABSTRACT 

The Sum of Absolute Differences (SAD) algorithm for motion 

estimation constitutes one of the most time consuming and 

compute intensive part of image registration in Automated Video 

Surveillance (AVS) using non-stationary cameras and H.264 

video compression. Many present solutions, implemented by use 

of dedicated hardware for video surveillance are incapable of 

delivering image registration for larger sized video streams in 

real-time. In this paper, we present a novel, high performance 

implementation of SAD on the general purpose GPU architecture, 

which is available in many laptops and PCs, using NVIDIA’s 

CUDA. The proposed implementation contains innovative and 

efficient optimizations to overcome the bottlenecks that limit the 

achievable speedup and outperforms the other parallel 

implementations not only in terms of speed but also accuracy. The 

use of threshold in the SAD computation prevents detection of 

false motion caused due to noise. The proper choice of macro 

block size for SAD computation provides more accurate results 

with significant reduction in execution times. This makes the 

motion estimation real-time which scales well for larger image 

sizes. The wide range of memories offered by the GPU 

architecture has been exploited to a large extent and a significant 

speedup of 204X for an image size of 1024×768 was achieved for 

SAD on the GeForce GTX 280 as compared to the serial 

implementation. The use of texture memory for accessing the 

periphery of the reference frame prevents the out of bound 

references and contributes to the speedup achieved.    
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1. INTRODUCTION 
The unprecedented growth in the amount of video content from 

various video capturing devices and the Internet has aroused a 

fresh interest in the video processing technology[1][2].The 

tracking of moving objects using non-stationary cameras requires 

video frame registration[3][4], which uses motion estimation. It 

plays a crucial role in many situations, like airborne and other on-

the-move surveillance scenarios. Block-based motion estimation 

uses block matching, which employs the SAD as one of the most 

frequently used criteria [5][6]. The high complexity of these state-

of-the-art algorithms makes them very difficult to be implemented 

on an ordinary CPU in real-time, which poses a major challenge 

to the developers. This calls for a High Performance 

Computational (HPC) solution to this problem that should be able 

to handle large amounts of data and achieve real-time object 

tracking and scales well for different input sizes.  

As a major part of motion estimation is pure SAD computation, 

[5] improvement in its performance would substantially reduce 

the time taken for block-based motion estimation.  

Fast and robust object tracking in video sequences is required by 

many applications. These methods are used by Video Surveillance 

systems to track objects, robots rely on them to perform 

navigation tasks or interacting with human beings, augmented 

reality systems depend on the position data acquired by visual 

tracking to place the virtual objects in their world, video-games or 

assisted devices can be controlled by hand or face tracking 

softwares that use motion estimation.  

Most of multimedia streaming applications need motion picture 

encoding and decoding. Motion estimation is one of the most 

important processes in motion picture coding, as the achievement 

of a high compression ratio depends on how well the motion 

estimation is accomplished [7].  

The recent developments in the GPU architecture have provided 

an effective tool to handle the workload. The GPUs are massively 

parallel unified shader designs that have a much higher 

computational capability than the CPUs and the video bandwidth 

between GPU and the video memory is about five times faster 

than that between CPU and system memory, the NVIDIA 

GeForce GTX 280 for example, has a single precision floating 

point capability of 933 GFlops and a memory bandwidth of 141.7 

Gb/sec. CUDA enables new applications with a standard platform 

for extracting valuable information from vast quantities of raw 

data. It enables HPC on normal enterprise workstations and server 

environments for data-intensive applications [10]. Moreover, the 

GPUs are quite ubiquitous as many laptops and desktops have 

GPUs, which can be used for running the application. Previously, 

some GPU based motion estimation methods have been proposed, 

[8][11] but the results have not been able to achieve real-time 

motion estimation by achieving a frame processing rate of 24-30 

frames per second (fps) for large video sizes. In this paper we 

present the parallel implementation of the SAD algorithm for 

motion estimation using block matching, exploiting the thread 

configurations and different memory types offered by the GPU 

architecture to a large extent. The use of threshold in SAD 

computation adds to the accuracy of motion estimation. It 

outperforms other implementations not only in terms of speed but 

also accuracy. A significant speedup of 204X for an image size of 

1024×768 was achieved for SAD on the GeForce GTX 280 as 

compared to the serial implementation. The use of texture 

memory for accessing the periphery of the reference frame 



prevents the out of bound references and contributes to the 

speedup achieved. The scalability was tested by executing 

different frame sizes on both the GPUs for macro block sizes of 

8×8 as well as 16×16.    

2. GPU Architecture and Related Work 
NVIDIA’s CUDA is a general purpose parallel computing 

architecture that leverages the parallel compute engine in NVIDIA 

Graphic Processor Units (GPU) to solve many complex 

computational problems. The programmable GPU is a highly 

parallel, multithreaded, many core co-processor specialized for 

compute intensive highly parallel computation. Since CUDA is 

geared towards fine-grained parallelism, it often works well for 

the highly data parallel applications which we often find in video 

processing. 

The three key abstractions of CUDA are the thread hierarchy, 

shared memories and barrier synchronization, which render it as 

only an extension of C. All the GPU threads run the same code 

and, are very light weight and have a low creation overhead. A 

kernel can be executed by a one dimensional or two dimensional 

grid of multiple equally-shaped thread blocks. A thread block is a 

3, 2 or 1-dimensional group of threads. Threads within a block 

can cooperate among themselves by sharing data through some 

shared memory and synchronizing their execution to coordinate 

memory accesses. Threads in different blocks cannot cooperate 

and each block can execute in any order relative to other blocks. 

The number of threads per block is therefore restricted by the 

limited memory resources of a processor core. On current GPUs, a 

thread block may contain up to 512 threads. The multiprocessor 

SIMT (Single Instruction Multiple Threads) unit creates, 

manages, schedules, and executes threads in groups of 32 parallel 

threads called warps. 

The device memory space consists of various types of memories, 

as shown in Figure. 1, each thread has a local memory and 

registers; also each block has its shared memory. Besides this the 

constant and the texture memory allocated for a grid is read only. 

The local memory resides in global memory allocated by the 

compiler and delivers the same performance as any other global 

memory region. The shared memory is on chip and the accesses 

are 100x-150x faster than accesses to local and global memory. 

The shared memory, for high bandwidth, is divided into equal 

sized memory modules called banks. But, if two memory requests 

fall in the same bank, then the access is serialized, thus reducing 

the bandwidth. For devices of compute capability 1.x, the warp 

size is 32 and the number of banks is 16, the shared memory 

requests are split into two halves for a warp and hence there can 

be no bank conflicts between threads belonging to two different 

halves of the warp. 

The problem of motion estimation using SAD on parallel 

architectures has been addressed by many earlier works like 

[8][11]. Chen et.al in [11] divide the macroblock into sub blocks, 

which cannot optimally use shared memory, and processing each 

pixel on each thread doesn’t give much speed up as the number of 

blocks are increased. Their approach also involves merging of the 

SAD values obtained. Lee et.al in [8] proposed a multipass motion 

estimation algorithm for GPU, which generates local and global 

SAD values in the first and the second passes respectively. In 

other works, the implementations are not suited to the optimal 

utilization of CUDA memories. Thus, our implementation takes 

care of all these factors. 

 

Figure 1 The device memory space in CUDA. 

3. The Sum of Absolute Difference Algorithm 
The SAD algorithm is widely used method for motion estimation, 

which finds widespread application in areas like image 

registration for Automated Video Surveillance and video 

compression using H.264[4][5], it forms the most computationally 

intensive part of image registration as well as video compression. 

In the process of video coding, the similarities between video 

frames could be used to achieve higher compression ratios. The 

usual coding techniques applied to moving objects within a video 

scene lower the compression efficiency as they only consider the 

pixels at the same position in the video frames. Motion estimation 

and the SAD algorithm are used to capture such movements more 

accurately for better compression efficiency. In video surveillance 

using moving cameras, a popular way to handle translation 

problems on images, using template matching is to compare the 

intensities of the pixels, using the SAD measure.  

The motion estimation on a video sequence using SAD uses the 

current video frame and a previous frame as the target frame. The 

two frames are compared pixel by pixel, summing up the absolute 

values of the differences of each of the two corresponding pixels. 

The result is a positive number that is used as the score. SAD 

reacts very sensitively to even minor changes within a scene. 

The block based motion estimation is performed on a set of pixels, 

every frame is divided into equally sized blocks, and for each 

block in the current frame, a search for most resembling block is 

done in the reference frame, searching the whole reference frame 

for each block in the current frame makes this task 

computationally intensive [5]. After the best matches are found 

for the current block the motion vectors are stored along with the 

SAD values. 

The basic unit of this method is a macro block of size 16×16 or 

8×8 on the previous frame (reference frame), which is taken as the 

reference to gauge the direction of motion. SAD algorithm is 

usually implemented in a nested loop with conditional branch. 
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Figure 2 The Sum of Absolute Differences algorithm 

Besides the calculation of SAD there are four loops in the 

algorithm as depicted in Figure. 2. It seeks the best matched 

macro block in the search region of the reference image frame to 

the current macro block in the current image frame. The best 

matched macro block is the one which has the minimum SAD 

value with the current macro block. 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm depicted in Figure 2 is computationally intensive as 

very large number of calculations and comparisons are required. 

However, as it is a block based algorithm, it is a good candidate 

for being parallelized and implemented on parallel architectures 

like the GPU architecture. 

Let            denote the pixel intensity of the pixels in the 

reference image and             denote the pixel intensities in a 

macro block of the current frame then the SAD value of the pixel 

intensities is given by (1). 

                                         
     
   

     
    (1) 

 Since several hundred repeated calculations of SAD are 

necessary in order to find the best matched macro block, it is 

important to seek an efficient implementation of SAD algorithm. 

 

3.1 Our approach to SAD 
In our approach to the SAD, the image is divided into macro 

blocks, with the SAD computation for each macro block being 

handled by a thread. Thus for an image size of 1024×768 the 

thread configuration for a macro block size of 8×8 was 128×96 

threads, and 64×48 for a 16×16 macro block, with each thread 

performing the computation for its respective macro block. In the 

reference frame a 32×32 (or 16×16) region called the window, is 

selected and the sum of absolute differences (SAD) is computed 

in this window frame, with the macro block of the current frame 

i.e. one by one all the possible 16×16 (or 8×8) blocks on the 

32×32 (or 16×16) window frame are taken for SAD computation 

on each pixel. The frame in which the SAD turns out to be the 

minimum is selected and determines the motion of the object from 

the reference frame to the current frame.  

In the following section we describe the approach taken for the 

image size of 256×191. For this image size we have used 8×8 as 

the macro block size so shared memory could be used effectively, 

and portions of both the frames that were required for the SAD 

computation could be accessed from the shared memory which is 

limited to 64 kilobytes per block. As the computation of SAD on 

each pixel refrains from accessing memory locations within the 

same banks, there were lesser bank conflicts. As the shared 

memory is limited, the portions of the current and the reference 

frames required for SAD computation of the macro blocks could 

not be accommodated in the shared memory, to overcome this  

 

 

 

 

 

 

 

 

 

 

 

 

 

problem the remaining portion was accommodated in the texture 

memory, similar to the way shown in Figure 3 for an image size 

of 1024×768. The texture memory space is cached so a texture 

fetch costs one memory read from device memory only on a cache 

miss, otherwise it just costs one read from the texture cache. The 

texture cache is optimized for 2D spatial locality, so threads of the 

same warp that read texture addresses that are close together 

achieve best performance. This helped us to remove the memory 

latency involved in SAD calculation. Also, as the out of bound 

memory accesses are clamped by the texture memory, therefore 

we were able to effectively perform SAD computation on the 

peripheral pixels of the reference frame, which added to the 

accuracy and speedup achievable. In our approach only the SAD 

values above a threshold were considered, so that motion caused 

due to noise is ignored. Moreover, the choice of the macro block 

size led to the added accuracy in the results, which gave more 

precise motion vector estimates for the image size of 256×191 as 

shown in Figure 4.  

Thus, through the above mentioned approach we were able to 

make the SAD calculations faster by 204 times on the GTX 280 

for an image size of 1024×768, as compared to the serial 

implementation. A reasonable speedup of 11X was achieved on 

the GTX 8400GS.  

 

for(rows of macro blocks) 

   {  for(columns of macro blocks) 

         {  for(rows of template) 

                   {  for(columns of template) 

  { 

  SAD computation; 

  SAD comparison; (>threshold) 

  }  

                    } 

          } 

    } 

    

 

              

   

Figure 3 Our Approach to SAD computation 

 



s, otherwise it just costs one read from the texture cache. The  

texture cache is optimized for 2D spatial locality, so threads of the 

smage size of 256×191 as shown in Figumage size of 1024×768 

both the macro block sizes (16×16 as well as 8×8) were used, the 

approach used for the 

4. Experimental Results 
The parallel version of SAD was executed on the NVIDIA 

GeForce GTX 280 and the NVIDIA GeForce 8400GS GPUs. The 

GTX 280, having a single precision floating point capability of 

933 GFlops and 1GB dedicated DDR3 video memory, was on 

board a 3.2 GHz Intel Xeon machine. The GTX 280 has 30 

streaming multiprocessors with 8 cores each, hence at total of 240  

Image Size Macro block size Execution time (ms) 

1024×768 16×16 40.63 

1024×768 8×8 14.23 

640×480 16×16 19.06 

640×480 8×8 5.11 

256×191 8×8 2.28 

Table 2. Execution times for GeForce GTX 280 

Image Size Macro block size Execution time (ms) 

1024×768 16×16 779.23 

1024×768 8×8 344.78 

640×480 16×16 292.64 

640×480 8×8 136.37 

256×191 8×8 24.53 

Table 3. Execution times for GeForce 8400GS 

stream processors. It belongs to the compute capability 1.3 which 

supports advanced features like page-locked host memory and 

those which take care of the alignment and synchronization 

issues.The 8400 GS has  two streaming multiprocessors with 8 

cores each, i.e. 16 stream processors, with a single precision 

floating point capability of 28.8 GFlops and 128 MB of dedicated 

video memory. An 8400GS on board a 2.0GHz Intel Centrino 

Duo machine was used. It belongs to the compute capability 1.2. 

The development environment used was Visual Studio 2005 and 

the CUDA profiler version 2.2 was used for profiling the CUDA 

implementation. The image sizes that have been used are 

1024×768, 640×480 and 256×191.  

The SAD algorithm is computationally intensive and hence was 

suitable for implementation on the GPU architecture. Besides this, 

being a block based algorithm, it offered a pixel level parallelism 

that was exploited in our implementation. The host of memories 

offered by the CUDA architecture were exploited to hide the 

memory latency. The use of texture memory allowed for 

computing SAD on the peripheral pixels of the reference frame 

due to the cudaAddressModeClamp addressing mode of the 

texture memory, which clamps the out of bound memory accesses 

to valid addresses. Consequently, we were able to achieve 

significant speedup in the GPU implementations, as compared to 

the serial implementation.The parallel codes for SAD were 

executed on both the GPUs for practical comparison. The  
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Figure 4 (a) Reference Frame (b) Current Frame (c) Output 

with motion vectors 

execution times for SAD on the GTX 280 are shown in Table 2 

and those for the 8400 GS are shown in Table 3. The execution 

times indicate that the implementations scaled well for larger 

image sizes on both the GPUs, for an image size of 1024×768 we 

were able to achieve an execution time of 40.63ms on the GTX 

280 and 8309ms on serial execution, indicating a significant 

speedup of 204X. The image size of 256×191 is best for use in 

motion estimation and the proposed implementation promises 

improved utility in real-time motion estimation, even on the 

8400GS. Figure 4 shows the motion vectors obtained by SAD 

computation on the two frames. The profiler outputs of the GTX 

280 for the 1024×768 image with a macro block size of 8×8 as 

well as 16×16 is shown in Table 1. 

As each thread performs the SAD computation for the entire 

macro block, the occupancy remains low, especially in the case of 

the size 16×16. However, in case of 8×8, as shown in Table 1 the 

occupancy became almost three times that of the 16×16 

implementation, owing to larger grid size and hence better 

utilization of the streaming multiprocessors. The total number of 

branches that became divergent in the 16×16 implementation was 

a very small fraction of the total number of branches. In the 8×8 

implementation although, the total number of divergent branches 

are higher, the execution time is lower as well as the occupancy is 

Macro 

block 

size 

Occupancy Grid 

Size 

Block 

Size 

Total 

Branches 

Divergent 

Branches 

Shared 

Memory 

(bytes) 

Total Global 

memory Loads  

Total Global 

Load 

Request 

8×8 0.094 

 

16×24 8×4 49224 

 

7788 

 

4124 23680 

 

768 

 

16×16 0.031 

 

8×12 8×4 14865 

 

4 

 

8220 39168 

 

768 

 

Table 1 CUDA Profiler output for 1024×768 image on the GTX 280   

 



higher, as compared to the 16×16 implementation largely because 

of the better use of shared memory and larger grid size. The total 

number of warps serialized in the 8×8 implementation was less as 

compared to the 16×16 implementation, due to the lesser bank 

conflicts within the threads. Due to these factors we were able to 

achieve a significant speedup of 204X on the GTX 280 for 

1024×768 image size, and a reasonable execution time of 24.53ms 

for the image size of 256×191 on the 8400GS, which meets the 

real time requirements. 

 

Figure 5 Comparison between the execution times on GTX 

280 and 8400GS for various image sizes, using the 8×8 

Figure 5 shows a graph indicating the comparison of execution 

times for various image sizes on the GTX 280 as well as the 

8400GS, which shows the scalability of the proposed 

implementation.  

5. Conclusion and Future Work 
SAD for motion estimation constitutes one of the most time 

consuming and compute intensive parts of image registration in 

Automated Video Surveillance (AVS) using non-stationary 

cameras as well as H.264 video compression. SAD is block based 

and offers pixel level parallelism that can be very well exploited 

in the GPU architecture. 

Through this paper, we present a novel, high performance 

implementation of SAD on the general purpose GPU architecture, 

using CUDA which makes the motion estimation real-time and 

scales well for larger image sizes. The proposed implementation 

outperforms the other parallel implementations not only in terms 

of speed but also accuracy .The wide range of memories offered 

by the GPU architecture has been exploited to a large extent 

resulting in a significant speedup of 204X for SAD on the 

GeForce GTX 280. Efficient usage of the different kinds of 

memories offered by the CUDA architecture and subsequent 

experimental verification resulted in the most optimal 

implementations. As a result, significant speedup was achieved.  

In the future we intend to explore other block based motion 

estimation techniques like the Fast Normalized Cross Correlation 

on the GPU architecture using CUDA and compare the portability 

of both the algorithms on the GPU architecture. 
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