
A high-performance parallel implementation of Sum of
Absolute Differences algorithm for motion estimation

using CUDA
Sanyam Mehta, Arindam Misra,

Ayush Singhal
Indian Institute of Technology,
Roorkee, Uttarakhand, INDIA

{ san01uec, ari07uce,
ayushuec,}@iitr.ernet.in

Praveen Kumar
Dept. of Computer Science,

GRIET, Hyderabad.
praveen.kverma@gmail.com

Ankush Mittal
College of Engineering Roorkee

Roorkee, Uttarakhand,

INDIA

dr.ankush.mittal@gmail.com

ABSTRACT

The Sum of Absolute Differences (SAD) algorithm for motion

estimation constitutes one of the most time consuming and

compute intensive part of image registration in Automated Video

Surveillance (AVS) using non-stationary cameras and H.264

video compression. Many present solutions, implemented by use

of dedicated hardware for video surveillance are incapable of

delivering image registration for larger sized video streams in

real-time. In this paper, we present a novel, high performance

implementation of SAD on the general purpose GPU architecture,

which is available in many laptops and PCs, using NVIDIA’s

CUDA. The proposed implementation contains innovative and

efficient optimizations to overcome the bottlenecks that limit the

achievable speedup and outperforms the other parallel

implementations not only in terms of speed but also accuracy. The

use of threshold in the SAD computation prevents detection of

false motion caused due to noise. The proper choice of macro

block size for SAD computation provides more accurate results

with significant reduction in execution times. This makes the

motion estimation real-time which scales well for larger image

sizes. The wide range of memories offered by the GPU

architecture has been exploited to a large extent and a significant

speedup of 204X for an image size of 1024×768 was achieved for

SAD on the GeForce GTX 280 as compared to the serial

implementation. The use of texture memory for accessing the

periphery of the reference frame prevents the out of bound

references and contributes to the speedup achieved.

Keywords

GPU, Motion estimation, Sum of Absolute Difference, Image

Registration.

1. INTRODUCTION
The unprecedented growth in the amount of video content from

various video capturing devices and the Internet has aroused a

fresh interest in the video processing technology[1][2].The

tracking of moving objects using non-stationary cameras requires

video frame registration[3][4], which uses motion estimation. It

plays a crucial role in many situations, like airborne and other on-

the-move surveillance scenarios. Block-based motion estimation

uses block matching, which employs the SAD as one of the most

frequently used criteria [5][6]. The high complexity of these state-

of-the-art algorithms makes them very difficult to be implemented

on an ordinary CPU in real-time, which poses a major challenge

to the developers. This calls for a High Performance

Computational (HPC) solution to this problem that should be able

to handle large amounts of data and achieve real-time object

tracking and scales well for different input sizes.

As a major part of motion estimation is pure SAD computation,

[5] improvement in its performance would substantially reduce

the time taken for block-based motion estimation.

Fast and robust object tracking in video sequences is required by

many applications. These methods are used by Video Surveillance

systems to track objects, robots rely on them to perform

navigation tasks or interacting with human beings, augmented

reality systems depend on the position data acquired by visual

tracking to place the virtual objects in their world, video-games or

assisted devices can be controlled by hand or face tracking

softwares that use motion estimation.

Most of multimedia streaming applications need motion picture

encoding and decoding. Motion estimation is one of the most

important processes in motion picture coding, as the achievement

of a high compression ratio depends on how well the motion

estimation is accomplished [7].

The recent developments in the GPU architecture have provided

an effective tool to handle the workload. The GPUs are massively

parallel unified shader designs that have a much higher

computational capability than the CPUs and the video bandwidth

between GPU and the video memory is about five times faster

than that between CPU and system memory, the NVIDIA

GeForce GTX 280 for example, has a single precision floating

point capability of 933 GFlops and a memory bandwidth of 141.7

Gb/sec. CUDA enables new applications with a standard platform

for extracting valuable information from vast quantities of raw

data. It enables HPC on normal enterprise workstations and server

environments for data-intensive applications [10]. Moreover, the

GPUs are quite ubiquitous as many laptops and desktops have

GPUs, which can be used for running the application. Previously,

some GPU based motion estimation methods have been proposed,

[8][11] but the results have not been able to achieve real-time

motion estimation by achieving a frame processing rate of 24-30

frames per second (fps) for large video sizes. In this paper we

present the parallel implementation of the SAD algorithm for

motion estimation using block matching, exploiting the thread

configurations and different memory types offered by the GPU

architecture to a large extent. The use of threshold in SAD

computation adds to the accuracy of motion estimation. It

outperforms other implementations not only in terms of speed but

also accuracy. A significant speedup of 204X for an image size of

1024×768 was achieved for SAD on the GeForce GTX 280 as

compared to the serial implementation. The use of texture

memory for accessing the periphery of the reference frame

prevents the out of bound references and contributes to the

speedup achieved. The scalability was tested by executing

different frame sizes on both the GPUs for macro block sizes of

8×8 as well as 16×16.

2. GPU Architecture and Related Work
NVIDIA’s CUDA is a general purpose parallel computing

architecture that leverages the parallel compute engine in NVIDIA

Graphic Processor Units (GPU) to solve many complex

computational problems. The programmable GPU is a highly

parallel, multithreaded, many core co-processor specialized for

compute intensive highly parallel computation. Since CUDA is

geared towards fine-grained parallelism, it often works well for

the highly data parallel applications which we often find in video

processing.

The three key abstractions of CUDA are the thread hierarchy,

shared memories and barrier synchronization, which render it as

only an extension of C. All the GPU threads run the same code

and, are very light weight and have a low creation overhead. A

kernel can be executed by a one dimensional or two dimensional

grid of multiple equally-shaped thread blocks. A thread block is a

3, 2 or 1-dimensional group of threads. Threads within a block

can cooperate among themselves by sharing data through some

shared memory and synchronizing their execution to coordinate

memory accesses. Threads in different blocks cannot cooperate

and each block can execute in any order relative to other blocks.

The number of threads per block is therefore restricted by the

limited memory resources of a processor core. On current GPUs, a

thread block may contain up to 512 threads. The multiprocessor

SIMT (Single Instruction Multiple Threads) unit creates,

manages, schedules, and executes threads in groups of 32 parallel

threads called warps.

The device memory space consists of various types of memories,

as shown in Figure. 1, each thread has a local memory and

registers; also each block has its shared memory. Besides this the

constant and the texture memory allocated for a grid is read only.

The local memory resides in global memory allocated by the

compiler and delivers the same performance as any other global

memory region. The shared memory is on chip and the accesses

are 100x-150x faster than accesses to local and global memory.

The shared memory, for high bandwidth, is divided into equal

sized memory modules called banks. But, if two memory requests

fall in the same bank, then the access is serialized, thus reducing

the bandwidth. For devices of compute capability 1.x, the warp

size is 32 and the number of banks is 16, the shared memory

requests are split into two halves for a warp and hence there can

be no bank conflicts between threads belonging to two different

halves of the warp.

The problem of motion estimation using SAD on parallel

architectures has been addressed by many earlier works like

[8][11]. Chen et.al in [11] divide the macroblock into sub blocks,

which cannot optimally use shared memory, and processing each

pixel on each thread doesn’t give much speed up as the number of

blocks are increased. Their approach also involves merging of the

SAD values obtained. Lee et.al in [8] proposed a multipass motion

estimation algorithm for GPU, which generates local and global

SAD values in the first and the second passes respectively. In

other works, the implementations are not suited to the optimal

utilization of CUDA memories. Thus, our implementation takes

care of all these factors.

Figure 1 The device memory space in CUDA.

3. The Sum of Absolute Difference Algorithm
The SAD algorithm is widely used method for motion estimation,

which finds widespread application in areas like image

registration for Automated Video Surveillance and video

compression using H.264[4][5], it forms the most computationally

intensive part of image registration as well as video compression.

In the process of video coding, the similarities between video

frames could be used to achieve higher compression ratios. The

usual coding techniques applied to moving objects within a video

scene lower the compression efficiency as they only consider the

pixels at the same position in the video frames. Motion estimation

and the SAD algorithm are used to capture such movements more

accurately for better compression efficiency. In video surveillance

using moving cameras, a popular way to handle translation

problems on images, using template matching is to compare the

intensities of the pixels, using the SAD measure.

The motion estimation on a video sequence using SAD uses the

current video frame and a previous frame as the target frame. The

two frames are compared pixel by pixel, summing up the absolute

values of the differences of each of the two corresponding pixels.

The result is a positive number that is used as the score. SAD

reacts very sensitively to even minor changes within a scene.

The block based motion estimation is performed on a set of pixels,

every frame is divided into equally sized blocks, and for each

block in the current frame, a search for most resembling block is

done in the reference frame, searching the whole reference frame

for each block in the current frame makes this task

computationally intensive [5]. After the best matches are found

for the current block the motion vectors are stored along with the

SAD values.

The basic unit of this method is a macro block of size 16×16 or

8×8 on the previous frame (reference frame), which is taken as the

reference to gauge the direction of motion. SAD algorithm is

usually implemented in a nested loop with conditional branch.

Student Authors: Sanyam Mehta, Arindam Misra, Ayush Singhal. B.Tech

Final Year, CSE, IIT Roorkee.

Figure 2 The Sum of Absolute Differences algorithm

Besides the calculation of SAD there are four loops in the

algorithm as depicted in Figure. 2. It seeks the best matched

macro block in the search region of the reference image frame to

the current macro block in the current image frame. The best

matched macro block is the one which has the minimum SAD

value with the current macro block.

The algorithm depicted in Figure 2 is computationally intensive as

very large number of calculations and comparisons are required.

However, as it is a block based algorithm, it is a good candidate

for being parallelized and implemented on parallel architectures

like the GPU architecture.

Let denote the pixel intensity of the pixels in the

reference image and denote the pixel intensities in a

macro block of the current frame then the SAD value of the pixel

intensities is given by (1).

 (1)

 Since several hundred repeated calculations of SAD are

necessary in order to find the best matched macro block, it is

important to seek an efficient implementation of SAD algorithm.

3.1 Our approach to SAD
In our approach to the SAD, the image is divided into macro

blocks, with the SAD computation for each macro block being

handled by a thread. Thus for an image size of 1024×768 the

thread configuration for a macro block size of 8×8 was 128×96

threads, and 64×48 for a 16×16 macro block, with each thread

performing the computation for its respective macro block. In the

reference frame a 32×32 (or 16×16) region called the window, is

selected and the sum of absolute differences (SAD) is computed

in this window frame, with the macro block of the current frame

i.e. one by one all the possible 16×16 (or 8×8) blocks on the

32×32 (or 16×16) window frame are taken for SAD computation

on each pixel. The frame in which the SAD turns out to be the

minimum is selected and determines the motion of the object from

the reference frame to the current frame.

In the following section we describe the approach taken for the

image size of 256×191. For this image size we have used 8×8 as

the macro block size so shared memory could be used effectively,

and portions of both the frames that were required for the SAD

computation could be accessed from the shared memory which is

limited to 64 kilobytes per block. As the computation of SAD on

each pixel refrains from accessing memory locations within the

same banks, there were lesser bank conflicts. As the shared

memory is limited, the portions of the current and the reference

frames required for SAD computation of the macro blocks could

not be accommodated in the shared memory, to overcome this

problem the remaining portion was accommodated in the texture

memory, similar to the way shown in Figure 3 for an image size

of 1024×768. The texture memory space is cached so a texture

fetch costs one memory read from device memory only on a cache

miss, otherwise it just costs one read from the texture cache. The

texture cache is optimized for 2D spatial locality, so threads of the

same warp that read texture addresses that are close together

achieve best performance. This helped us to remove the memory

latency involved in SAD calculation. Also, as the out of bound

memory accesses are clamped by the texture memory, therefore

we were able to effectively perform SAD computation on the

peripheral pixels of the reference frame, which added to the

accuracy and speedup achievable. In our approach only the SAD

values above a threshold were considered, so that motion caused

due to noise is ignored. Moreover, the choice of the macro block

size led to the added accuracy in the results, which gave more

precise motion vector estimates for the image size of 256×191 as

shown in Figure 4.

Thus, through the above mentioned approach we were able to

make the SAD calculations faster by 204 times on the GTX 280

for an image size of 1024×768, as compared to the serial

implementation. A reasonable speedup of 11X was achieved on

the GTX 8400GS.

for(rows of macro blocks)

 { for(columns of macro blocks)

 { for(rows of template)

 { for(columns of template)

 {

 SAD computation;

 SAD comparison; (>threshold)

 }

 }

 }

 }

Figure 3 Our Approach to SAD computation

s, otherwise it just costs one read from the texture cache. The

texture cache is optimized for 2D spatial locality, so threads of the

smage size of 256×191 as shown in Figumage size of 1024×768

both the macro block sizes (16×16 as well as 8×8) were used, the

approach used for the

4. Experimental Results
The parallel version of SAD was executed on the NVIDIA

GeForce GTX 280 and the NVIDIA GeForce 8400GS GPUs. The

GTX 280, having a single precision floating point capability of

933 GFlops and 1GB dedicated DDR3 video memory, was on

board a 3.2 GHz Intel Xeon machine. The GTX 280 has 30

streaming multiprocessors with 8 cores each, hence at total of 240

Image Size Macro block size Execution time (ms)

1024×768 16×16 40.63

1024×768 8×8 14.23

640×480 16×16 19.06

640×480 8×8 5.11

256×191 8×8 2.28

Table 2. Execution times for GeForce GTX 280

Image Size Macro block size Execution time (ms)

1024×768 16×16 779.23

1024×768 8×8 344.78

640×480 16×16 292.64

640×480 8×8 136.37

256×191 8×8 24.53

Table 3. Execution times for GeForce 8400GS

stream processors. It belongs to the compute capability 1.3 which

supports advanced features like page-locked host memory and

those which take care of the alignment and synchronization

issues.The 8400 GS has two streaming multiprocessors with 8

cores each, i.e. 16 stream processors, with a single precision

floating point capability of 28.8 GFlops and 128 MB of dedicated

video memory. An 8400GS on board a 2.0GHz Intel Centrino

Duo machine was used. It belongs to the compute capability 1.2.

The development environment used was Visual Studio 2005 and

the CUDA profiler version 2.2 was used for profiling the CUDA

implementation. The image sizes that have been used are

1024×768, 640×480 and 256×191.

The SAD algorithm is computationally intensive and hence was

suitable for implementation on the GPU architecture. Besides this,

being a block based algorithm, it offered a pixel level parallelism

that was exploited in our implementation. The host of memories

offered by the CUDA architecture were exploited to hide the

memory latency. The use of texture memory allowed for

computing SAD on the peripheral pixels of the reference frame

due to the cudaAddressModeClamp addressing mode of the

texture memory, which clamps the out of bound memory accesses

to valid addresses. Consequently, we were able to achieve

significant speedup in the GPU implementations, as compared to

the serial implementation.The parallel codes for SAD were

executed on both the GPUs for practical comparison. The

(a)

(b)

(c)

Figure 4 (a) Reference Frame (b) Current Frame (c) Output

with motion vectors

execution times for SAD on the GTX 280 are shown in Table 2

and those for the 8400 GS are shown in Table 3. The execution

times indicate that the implementations scaled well for larger

image sizes on both the GPUs, for an image size of 1024×768 we

were able to achieve an execution time of 40.63ms on the GTX

280 and 8309ms on serial execution, indicating a significant

speedup of 204X. The image size of 256×191 is best for use in

motion estimation and the proposed implementation promises

improved utility in real-time motion estimation, even on the

8400GS. Figure 4 shows the motion vectors obtained by SAD

computation on the two frames. The profiler outputs of the GTX

280 for the 1024×768 image with a macro block size of 8×8 as

well as 16×16 is shown in Table 1.

As each thread performs the SAD computation for the entire

macro block, the occupancy remains low, especially in the case of

the size 16×16. However, in case of 8×8, as shown in Table 1 the

occupancy became almost three times that of the 16×16

implementation, owing to larger grid size and hence better

utilization of the streaming multiprocessors. The total number of

branches that became divergent in the 16×16 implementation was

a very small fraction of the total number of branches. In the 8×8

implementation although, the total number of divergent branches

are higher, the execution time is lower as well as the occupancy is

Macro

block

size

Occupancy Grid

Size

Block

Size

Total

Branches

Divergent

Branches

Shared

Memory

(bytes)

Total Global

memory Loads

Total Global

Load

Request

8×8 0.094

16×24 8×4 49224

7788

4124 23680

768

16×16 0.031

8×12 8×4 14865

4

8220 39168

768

Table 1 CUDA Profiler output for 1024×768 image on the GTX 280

higher, as compared to the 16×16 implementation largely because

of the better use of shared memory and larger grid size. The total

number of warps serialized in the 8×8 implementation was less as

compared to the 16×16 implementation, due to the lesser bank

conflicts within the threads. Due to these factors we were able to

achieve a significant speedup of 204X on the GTX 280 for

1024×768 image size, and a reasonable execution time of 24.53ms

for the image size of 256×191 on the 8400GS, which meets the

real time requirements.

Figure 5 Comparison between the execution times on GTX

280 and 8400GS for various image sizes, using the 8×8

Figure 5 shows a graph indicating the comparison of execution

times for various image sizes on the GTX 280 as well as the

8400GS, which shows the scalability of the proposed

implementation.

5. Conclusion and Future Work
SAD for motion estimation constitutes one of the most time

consuming and compute intensive parts of image registration in

Automated Video Surveillance (AVS) using non-stationary

cameras as well as H.264 video compression. SAD is block based

and offers pixel level parallelism that can be very well exploited

in the GPU architecture.

Through this paper, we present a novel, high performance

implementation of SAD on the general purpose GPU architecture,

using CUDA which makes the motion estimation real-time and

scales well for larger image sizes. The proposed implementation

outperforms the other parallel implementations not only in terms

of speed but also accuracy .The wide range of memories offered

by the GPU architecture has been exploited to a large extent

resulting in a significant speedup of 204X for SAD on the

GeForce GTX 280. Efficient usage of the different kinds of

memories offered by the CUDA architecture and subsequent

experimental verification resulted in the most optimal

implementations. As a result, significant speedup was achieved.

In the future we intend to explore other block based motion

estimation techniques like the Fast Normalized Cross Correlation

on the GPU architecture using CUDA and compare the portability

of both the algorithms on the GPU architecture.

6. REFERENCES
[1] Lin, D.; Xiaohuang Huang; Quang Nguyen; Blackburn, J.;

Rodrigues, C.; Huang, T.; Do, M.N.; Patel, S.J.; Hwu, W.-

M.W.; , "The parallelization of video processing," Signal

Processing Magazine, IEEE , vol.26, no.6, pp.103-112,

November 2009.

[2] M.K. Bhuyan, Brian C. Lovell, Abbas Bigdeli, "Tracking

with Multiple Cameras for Video Surveillance," dicta,

pp.592-599, 9th Biennial Conference of the Australian

Pattern Recognition Society on Digital Image Computing

Techniques and Applications (DICTA 2007), 2007

[3] Arvind Kandhalu, Anthony Rowe, Ragunathan Rajkumar,

Chingchun Huang, Chao-Chun Yeh, "Real-Time Video

Surveillance over IEEE 802.11 Mesh Networks," rtas,

pp.205-214, 2009 15th IEEE Real-Time and Embedded

Technology and Applications Symposium, 2009

[4] Praveen Kumar, Kannappan Palaniappan, Ankush Mittal and

Guna Seetharaman. “Parallel Blob Extraction using

Multicore Cell Processor”. Advanced Concepts for

Intelligent Vision Systems (ACIVS) 2009. LNCS 5807, pp.

320–332, 2009.

[5] Vanne, J.; Aho, E.; Hamalainen, T.D.; Kuusilinna, K.; , "A

High-Performance Sum of Absolute Difference

Implementation for Motion Estimation," Circuits and

Systems for Video Technology, IEEE Transactions on ,

vol.16, no.7, pp.876-883, July 2006

[6] Rehman, S.; Young, R.; Chatwin, C.; Birch, P.; , "An FPGA

Based Generic Framework for High Speed Sum ofAbsolute

Difference Implementation," European Journal of Scientific

Research, vol.33, no.1, pp. 6-29, 2009

[7] N.A. Khan, S. Masud, A. Ahmad, “A variable block size

motion estimation algorithm for real-time H.264 video

encoding”, Signal Processing: Image Communication,

vol.21, no.4, pp. 306-315, April 2006

[8] Chuan-Yiu Lee; Yu-Cheng Lin; Chi-Ling Wu; Chin-Hsiang

Chang; You-Ming Tsao; Shao-Yi Chien; , "Multi-Pass and

Frame Parallel Algorithms of Motion Estimation in

H.264/AVC for Generic GPU," Multimedia and Expo, 2007

IEEE International Conference on , vol., no., pp.1603-1606,

2-5 July 2007

[9] Boyer, M.; Tarjan, D.; Acton, S.T.; Skadron, K.; ,

"Accelerating leukocyte tracking using CUDA: A case study

in leveraging manycore coprocessors," Parallel & Distributed

Processing, 2009. IPDPS 2009. IEEE International

Symposium on , vol., no., pp.1-12, 23-29 May 2009

[10] Kung, M.C.; Au, O.C.; Wong, P.H.W.; Chun Hung Liu; ,

"Block based parallel motion estimation using programmable

graphics hardware," Audio, Language and Image Processing,

2008. ICALIP 2008. International Conference on , vol., no.,

pp.599-603, 7-9 July 2008

[11] Wei-Nien Chen and Hsueh-Ming Hang, 2008 "H.264/AVC

motion estimation implementation on compute unified device

architecture (CUDA)" in conf. ICME 2008. National Chiao-

Tung University, Taiwan

