Exascale Computing: The Last Rehearsal Before the Post-Moore Era

Marc Snir
THE WORLD IS ENDING
THE (CMOS) WORLD IS ENDING

So says the International Technology Roadmap for Semiconductors (ITRS)
The International Technology Roadmap for Semiconductors is sponsored by the five leading chip manufacturing regions in the world: Europe, Japan, Korea, Taiwan, and the United States. www.itrs.net
End of CMOS?

IN THE LONG TERM (~2017 THROUGH 2024)
While power consumption is an urgent challenge, its leakage or static component will become a major industry crisis in the long term, threatening the survival of CMOS technology itself, just as bipolar technology was threatened and eventually disposed of decades ago. [ITRS 2009]

• Unlike the situation at the end of the bipolar era, no technology is waiting in the wings.
“POST-CONVENTIONAL CMOS”

• New materials
  • ... such as III-V or germanium thin channels on silicon, or even semiconductor nanowires, carbon nanotubes, graphene or others may be needed.

• New structures
  • three-dimensional architecture, such as vertically stackable cell arrays in monolithic integration, with acceptable yield and performance.

• ROI challenges
  • ... achieving constant/improved ratio of ... cost to throughput might be an insoluble dilemma.

• ...These are huge industry challenges to simply imagine and define

• Note: feature size in 2021 (13 nm) = ~55 silicon atoms (Si-Si lattice distance is 0.235 nm)
The Post-Moore Era

• **Scaling is ending**
  • Voltage scaling ended in 2004 (leakage current)
  • Scaling rate will slow down in the next few years
  • Feature scaling will end in 202x (not enough atoms)
  • Scaling may end much earlier, because of technological or economic barriers
    • Continued scaling in the next decade will need a sequence of (small) miracles (new materials, new structures, new manufacturing technologies)
    • Scaling ends, when doubling performance means doubling cost
Rock’s Law

- Cost of semiconductor chip fabrication plant doubles every four years
- Current cost is $7-$9B
- Intel’s yearly revenue is $35B

- Memory cost has not decreased in the last few years
IT After the End of Scaling (1)

- IT industry changes in fundamental ways
  - Market is driven at the top by function and fashion – not performance
  - All increases in hardware performance are driven by multicore parallelism in the next few years
  - It’s a slow slog for improved compute efficiency, afterwards
  - Computer Architecture and System Design become true engineering disciplines (the end of superficiality)
Compute Efficiency

• Progressively more efficient use of a fixed set of resources (similar to fuel efficiency)
  • More computations per joule
  • More computations per transistor
• A clear understanding of where performance is wasted and continuous progress to reduce “waste”.
• A clear understanding of inherent limitations of computations – to distinguish “waste”, “overhead” from “needed”
HPC – The Canary in the Mine

- HPC is already heavily constrained by low compute efficiency
  - High power consumption is at the limit of current machine rooms: a future exascale system may require > 300MW.
  - Low thread performance entails high levels of parallelism: a future exascale system may need ~1B threads.
- Higher compute efficiency is essential for exascale computing
PETASCALE TODAY
PETASCALE IN A YEAR

Blue Waters
(Soon to be) Current Petascale Platforms: Blue Waters

- **System Attribute**
  - **Vendor**: IBM
  - **Processor**: IBM Power7
  - **Peak Performance (PF)**: ~10
  - **Sustained Performance (PF)**: ~1
  - **Number of Cores/Chip**: 8
  - **Number of Cores**: >300,000
  - **Amount of Memory (PB)**: ~1
  - **Amount of Disk Storage (PB)**: ~18
  - **Amount of Archival Storage (PB)**: >500
  - **External Bandwidth (Gbps)**: 100-400
  - **Water Cooled**: >10 MW
All large bipolar systems were water cooled
High-performance supercomputers used immersive cooling (fluorinert, liquid nitrogen)
A Cray 1 used 115 KW power
Same evolution (high power density, aggressive cooling) happening now with CMOS
Blue Waters is not “Out-of-the-Box” Product

• Work on power-efficient compute center
• Work on integration of Blue Waters in production environment
  • Storage, Networking, Workflow, Training…
• Collaborations with IBM and other partners on enhancements to essentially all software layers
Illinois Petascale Computing Facility

Cooling Towers
PCF is Near University Power and Cooling Infrastructure
Future
<table>
<thead>
<tr>
<th>Resource manager: Batch and interactive access</th>
<th>Environment: Traditional (command line), Eclipse IDE (application development, debugging, performance tuning, job and workflow management)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance tuning: HPC and HPACS toolkits, open source tools</td>
<td>Languages: C/C++, Fortran (77-2008 including CAF), UPC</td>
</tr>
<tr>
<td>Parallel debugging at full scale</td>
<td>Libraries: MASS, ESSL, PESSL, PETSc, visualization…</td>
</tr>
<tr>
<td></td>
<td>Programming Models: MPI/MP2, OpenMP, PGAS, Charm++, Cactus</td>
</tr>
<tr>
<td></td>
<td>Low-level communications API supporting active messages (LAPI)</td>
</tr>
<tr>
<td></td>
<td>Full – featured OS Sockets, threads, shared memory, checkpoint/restart</td>
</tr>
<tr>
<td></td>
<td>IO Model: Global, Parallel shared file system (&gt;10 PB) and archival storage (GPFS/HPSS) MPI I/O</td>
</tr>
</tbody>
</table>

**Hardware**

Multicore POWER7 processor with Simultaneous MultiThreading (SMT) and Vector MultiMedia Extensions

Private L1, L2 cache per core, shared L3 cache per chip

High-Performance, low-latency interconnect supporting RDMA
Molecular Dynamics

Climate

Star Evolution

Galaxy Formation

Contagion simulation

Turbulence

Quantum Monte Carlo

Multiscale Biology

Tornados

Earthquakes

Lattice QCD

quantum chemistry

Presentation Title
EXASCALE TOMORROW
Exascale in 2018 at 20 MWatts (?)

- It’s very hard [Kogge’s report]
  - Conventional designs plateau at 100 PF (peak) – all energy is used to move data
  - Aggressive design is at 70 MW and is very hard to use
    - 600M instruction/cycle
    - 0.0036 Byte/flop
    - No ECC, no redundancy
    - No caching (addressable workpad)
    - HW failure every 35 minutes
    - …
- Waiting 3-4 years does not solve the problem
  - *Exascale in CMOS requires revolutionary advances in compute efficiency*
Increasing Compute Efficiency (Software)

- Resiliency
- Communication-optimal computations
- Low entropy computations
- Jitter-resilient computation
- Steady-state computations
- Friction-less software layering
- Self-organizing computations
Resiliency

- HW for fault correction (and possibly fault detection) may be too expensive (consumes too much power)
  - and is source of jitter
- Current global checkpoint/restart algorithms cannot cope with MTBF of few hours or less
- Need SW (language, compiler, runtime) support for error compartmentalization
  - Catch error before it propagates
- May need fault-tolerant algorithms
  - Need new complexity theory
Communication-Efficient Algorithms

- Communication in time (memory) and space (buses, links) is, by far, the major source of energy consumption
- Our understanding of inherent communication needs of algorithms and communication-efficient algorithm design is very limited (FFT, dense linear algebra)
- Current characterization of communication patterns is very incomplete
  - Spatial-temporal locality
  - Communication topology
  - Communication dynamics
- Need:
  - Better theory of communication complexity
  - Better benchmarks
  - Better metrics
  - Communication-focused programming models (Higher level than MPI, but not hiding communication)
Low-Entropy Communication

- Communication can be much cheaper if “known in advance”
  - Latency hiding, reduced arbitration cost, bulk transfers (e.g., optical switches)
  - … Bulk mail vs. express mail
- Current HW/SW architectures take little advantage of such knowledge
  - Need architecture/system research
- CS is lacking a good algorithmic theory of entropy
  - Need theory, benchmarks, metrics
Jitter-Resilient Computation

• Expect increased variance in the compute speed of different components in a large machine
  • Power management
  • Error correction
  • Asynchronous system activities
  • Variance in application

• Need variance-tolerant applications
  • Bad: frequent barriers, frequent reductions
  • Good: 2-phase collectives, double-buffering

• Need theory and metrics
• Need new variance-tolerant algorithms
• Need automatic transformations for increased variance tolerance
Steady-State Computation

- Each subsystem of a large system (CPU, memory, interconnect, disk) has low average utilization during a long computation.
- Each subsystem is the performance bottleneck during part of the computation.
- Utilization is not steady-state – hence need to over-provision each subsystem.
- Proposed solution A: power management, to reduce subsystem consumption when not on critical path.
  - Hard (in theory and in practice)
- Proposed solution B: Techniques for steady-state computation
  - E.g., communication/computation overlap
- Need research in Software (programming models, compilers, run-time), and architecture.
Friction-less Software Layering

- Current HW/SW architectures have developed multiple, rigid levels of abstraction (ISA, VM, APIs, languages…)
  - Facilitates SW development but energy is lost at layer matching
- Flexible matching enables to regain lost performance
  - Inlining, on-line compilation, code morphing (Transmeta)
  - Similar techniques are needed for OS layers
- Increased customization becomes possible in the post-Moore era.
Self-Organizing Computations

• Hardware continuously changes (failures, power management)

• Algorithms have more dynamic behavior (multigrid, multiscale – adapt to evolution of simulated system)

➔ Mapping of computation to HW needs to be continuously adjusted

• Too hard to do in a centralized manner -> Need distributed, hill climbing algorithms

Petascale, Exascale and Post-Moore
Summary

• The end of Moore’s era will change in fundamental ways the IT industry and CS research
  • A much stronger emphasis on compute efficiency
  • A more systematic and rigorous study of sources of inefficiencies
• The quest for exascale at reasonable power budget is the first move into this new domain
Power7 Chip: Computational Heart of Blue Waters

- **Base Technology**
  - 45 nm, 576 mm²
  - 1.2 B transistors
  - 3.5 – 4 GHz

- **Chip**
  - 8 cores
  - 12 execution units/core
  - 1, 2, 4 way SMT/core

- **Caches**
  - 32 KB I, D-cache, 256 KB L2/core
  - 32 MB L3 (private/shared)

- **Dual DDR3 memory controllers**
  - 100 GB/s sustained memory bandwidth

Quad-chip MCM
Node = Quad-Chip Module + Hub chip
Hub Chip Module

- Connects to QCM (192 GB/s)
- Connects to 2 PCI-e slots (40 GB/s)
- Connects to 7 other QCM's in same drawer (336 GB/s – copper fabric)
  - Enables a single hypervisor to run across 8 QCM's
  - Allows I/O slots attached to the 8 hubs to be shared
- Connects four drawers together into a supernode (240 GB/s per hub – optical bus)
- Connects up to 512 supernodes together (320 GB/s per hub – optical bus)
Data Center In a Rack

- Compute
- Storage
- Switch
- 100% Cooling
- PDU Eliminated

Input: 8 Water Lines, 4 Power Cords
Out: ~100TFLOPs / 24.6TB / 153.5TB
192 PCI-e 16x / 12 PCI-e 8x

Rack
- 990.6w x 1828.8d x 2108.2
- 39”w x 72”d x 83”h
- ~2948kg (~6500lbs)

BPA
- 200 to 480Vac
- 370 to 575Vdc
- Redundant Power
- Direct Site Power Feed
- PDU Elimination

Storage Unit
- 4U
- 0-6 / Rack
- Up To 384 SFF DASD / Unit
- File System

CECs
- 2U
- 1-12 CECs/Rack
- 256 Cores
- 128 SN DIMM Slots / CEC
- 8,16, (32) GB DIMMs
- 17 PCI-e Slots
- Imbedded Switch
- Redundant DCA
- NW Fabric
- Up to:3072 cores, 24.6TB

WCU
- Facility Water Input
- 100% Heat to Water
- Redundant Cooling
- CRAH Eliminated

(49.2TB)