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Abstract—The goal of this paper is to implement an efficient
matrix inversion of symmetric positive-definite matrices on
heterogeneous GPU-based systems. The matrix inversion pro-
cedure can be split into three stages: computing the Cholesky
factorization, inverting the Cholesky factor and calculating the
product of the inverted Cholesky factor with its transpose to get
the final inverted matrix. Using high performance data layout,
which represents the matrix in the system memory with an
optimized cache-aware format, the computation of the three
stages is decomposed into fine-grained computational tasks.
The data flow programming model can then be represented as
a directed acyclic graph, where nodes represent tasks and edges
the dependencies between them. Standard implementations of
matrix inversions as well as other numerical algorithms (e.g.,
linear and eigenvalue solvers), available in the state-of-the-
art numerical libraries (e.g., LAPACK), rely on the expensive
fork-join paradigm to achieve parallel performance and are
characterized by artifactual synchronization points, which
have to be removed to fully exploit the underlying hardware
capabilities. Our tile algorithmic approach allows to remove
those bottlenecks and to flawlessly execute the tasks, as soon as
the data dependencies are satisfied. A hybrid runtime environ-
ment system becomes paramount to dynamically schedule the
numerical kernels on the available processing units, whether
it is a hardware accelerator (i.e, GPU) or a homogeneous
multicore (i.e., x86), and this is transparently carried out from
the user. Preliminary results are shown on a dual-socket quad-
core Intel Xeon 2.67GHz workstation with two nVIDIA Fermi
C2070 GPU cards. Our implementation (448 Gflop/s) results
in up to 5 and 6-fold improvement compared to the equivalent
routines from MAGMA V1.0 and PLASMA V2.4, respectively,
and 10-fold improvement compared to LAPACK V3.2 linked
with multithreaded Intel MKL BLAS V10.2, with a matrix size
of 24960× 24960.
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I. INTRODUCTION

The exascale roadmap [1] has clearly highlighted two
possible swim lanes to achieve 1018 floating point operations
by 2018. Indeed, the next-generation exascale platforms will
most likely be composed of homogeneous x86 multicore
(e.g., Blue Gene chips) or heterogeneous accelerator-based
systems (e.g., GPU architecture). In both cases, high perfor-
mance will have to be extracted using a bottom-up approach,

starting from a single processing node up to the distributed
system using a high-speed network interconnect.

In this paper, we focus on an efficient implementation of
the matrix inversion for symmetric positive-definite matrices
using an heterogeneous GPU-based workstation, which may
be seen as a typical node constituting the future generation
of high performance computing systems. Although the ex-
plicit matrix inversion computation may be in many cases
unnecessary and inadvisable, it still represents a critical
component of the variance-covariance matrix computation
in statistics [2] (see p.260 §3 for more applications). The
overall matrix inversion algorithm can be decomposed into
three successive steps: (1) computing the Cholesky factor-
ization, (2) inverting the Cholesky factor and (3) calculating
the product of the inverted Cholesky factor with its transpose
to get the final inverted matrix. Using tile algorithms [3],
the original matrix is split into square tiles, in which the
elements are contiguously stored in the system memory.
This high performance data layout allows not only to match
the algorithmic design with the underlying cache archi-
tecture, but also to expose more parallelism by removing
artifactual synchronization points thanks to the fine-grained
computational tasks. A directed acyclic graph can be used
to characterize the resulting data flow programming model,
where nodes represent tasks and edges the dependencies
between them. The different tasks are then scheduled for
execution as soon as their data dependencies are satisfied.
A dynamic runtime environment system StarPU [4] is em-
ployed to transparently schedule the numerical kernels on
the available processing units, whether it is a hardware ac-
celerator (i.e, GPU) or a homogeneous multicore (i.e., x86).
The preliminary results of our heterogeneous Cholesky-
based matrix inversion implementation show almost half a
Tflop/s (448 Gflop/s) on a dual-socket quad-core Intel Xeon
2.67GHz workstation with two nVIDIA Fermi C2070 GPU
cards and achieve many fold speed up against the equivalent
routines from the state-of-the-art numerical libraries i.e.,
LAPACK [5], PLASMA [3] and MAGMA [6].

The remainder of this paper is organized as follows:
Section II gives a detailed overview of previous projects



in this area. Section III presents the bottlenecks seen in the
standard block Cholesky-based matrix inversion algorithm.
Section IV explains how the tile algorithms associated with
fine-grained tasks overcomes those bottlenecks. Section V
introduces the new fine-grained and cache-friendly numeri-
cal kernels. Section VI describes the dynamic heterogeneous
scheduler StarPU. The performance result are shown in
Section VII, comparing our implementation with the state-
of-the-art, high performance dense linear algebra software
libraries. Finally, Section VIII summarizes the preliminary
results of this paper and presents the ongoing work.

II. RELATED WORK

A number of numerical software packages implement the
matrix inversion of symmetric positive definite matrices.

LAPACK [5] is a library of Fortran 77 subroutines for
solving those most commonly occurring problems in dense
matrix computations. Using block algorithm, it has been
designed to be efficient on a wide range of modern high-
performance computers with memory hierarchy design. The
name LAPACK is an acronym for Linear Algebra PACKage.
LAPACK can solve systems of linear equations, linear least
squares problems, eigenvalue problems and singular value
problems. LAPACK can also handle many associated com-
putations, such as matrix factorizations or estimating condi-
tion numbers. To compute the actual matrix inversion, the
symmetric definite-positive matrix is first factorized using
the routine DPOTRF (i.e., Cholesky factorization) followed
by the routine DPOTRI to calculate the final inverted matrix.

MAGMA [6] is a dense linear algebra library similar to
LAPACK but rather targeting heterogeneous architectures.
The current MAGMA distribution focuses on multicore
systems associated with a single GPU card. The main idea
is to off-load the compute-intensive operations found in
LAPACK algorithms (e.g. level 3 BLAS type of operations)
to the graphical device, while the least parallel and inefficient
ones are still handled by the CPU host. This allows to
basically accelerate LAPACK out-of-box and effortlessly
port existing LAPACK codes to heterogeneous platforms.
The Cholesky-based matrix inversion has been implemented
in MAGMA along those lines.

PLASMA [3] is also a dense linear algebra library de-
veloped to face the challenges brought by the introduction
of homogeneous multicore architectures. Based on tile al-
gorithms, the coarse-grained tasks in LAPACK algorithms
are broken into smaller granularity to enforce asynchronous,
out of order scheduling of operations. In particular, the
three stage cholesky-based matrix inversion has been studied
by Agullo et al. [7] in the context of PLASMA using
homogeneous x86 processing units. The authors show very
promising results, where computational tasks from the last
stage can potentially overlap with tasks from the previous
stages, as long as data dependencies are not violated for

numerical correctness purposes. It is noteworthy to mention
a very similar project FLAME [8], [9].

In this paper, the authors leverage the previous research
works explained above to tackle more complex and chal-
lenging heterogeneous systems composed by homogeneous
multicores associated with multiple hardware accelerators,
thanks to the dynamic load balancing scheduling framework
StarPU. In fact, this work proposed here represents a straight
continuation of previous works for the one-sided factoriza-
tions [10]. Dealing with multiple stage numerical algorithms
in the context of heterogeneous platforms along with new
kernel implementations are the main contributions of this
paper.

The next Section recalls the standard block algorithm to
compute the matrix inversion of symmetric definite-positive
matrices using the Cholesky factorization.

III. THE STANDARD BLOCK CHOLESKY-BASED MATRIX
INVERSION ALGORITHM

Block algorithms correspond to the main design of LA-
PACK [5]. The computation is basically split into successive
sequences composed by two phases: (1) the panel compu-
tation phase, mainly based on level 2 BLAS, in which the
transformations are accumulated within a panel of the matrix
and (2) the update of the trailing submatrix, in which the
transformations from the panel phase are applied at once to
the trailing submatrix in terms of level 3 BLAS operations.
One of the bottlenecks with such approach is the creation
of unnecessary synchronization points between the phases.
Moreover, LAPACK extracts its performance for the most
part from the parallel multithreaded BLAS. The parallel
paradigm behind it is very similar to the fork-join model,
which further exacerbates the issue related to artifactual syn-
chronization points. And the design of the block algorithm
for calculating the Cholesky-based matrix inversion is not an
exception and falls into this category. The original matrix is
first reduced using the Cholesky factorization A = LLT where
L is a lower triangular square matrix with positive diagonal
elements (i.e., DPOTRF routine call). The inverse of the
Cholesky factor is then computed T = L−1 (i.e., DTRTRI
routine call). The last step calculates the actual inverse
A−1 = T T T and stores it (in-place) in the lower side of the
matrix (i.e., DLAUUM routine call). This three-steps block
Cholesky-based matrix inversion is therefore very limited
in terms of parallelism and cannot fully benefit from the
available highly-parallel processing units.

The next Section recalls the concepts of tile algorithms
and describes how it can be applied to the numerical
algorithm studied in this paper.

IV. CHOLESKY-BASED MATRIX INVERSION USING TILE
ALGORITHM

The idea behind tile algorithm is to transform the original
matrix data with column-major data layout into tile data



Figure 1. Translation from LAPACK Layout (column-major) to Tile Data
Layout

layout, as seen in Figure 1. The parallelism becomes then
exposed to the user thanks to the task fine granularity.
Indeed, the matrix tiles can be seen as the fundamental
unit of computations of the numerical algorithms. The tile
Cholesky-based matrix inversion can be then written as in
Algorithm 1. The rigid panel-update sequence, previously
described in Section III, is now replaced by an out-of-order
task execution flow, where numerical kernels from different
stages operating on tiles can concurrently run. For example,
the tasks involved in the third stage (DLAUUM) can start
executing, while the first stage i.e., Cholesky factorization
(DPOTRF), is still being processed. Therefore, the strong
and artifactual synchronizations points, seen in block algo-
rithms, are completely removed using tile algorithms not
only within a single stage but also in-between stages of
the Cholesky-based matrix inversion algorithm. This has
already been studied in [7] in the context of homogeneous
multicore architectures. The authors leverage this study to
tackle challenging and complex heterogeneous platforms
using hardware accelerators.

The next Section describes the implementations of the
new high performance numerical kernels required for GPU
computing.

V. HIGH PERFORMANCE KERNEL DESCRIPTIONS

Most of the functions involved in the matrix inversion
using Cholesky inversion are straight calls to level 3 BLAS
routines i.e., DSYRK, DTRMM, DTRSM and DGEMM.
Therefore, by linking the application with the CUBLAS
library (nVIDIA BLAS package), those functions can be
substantially accelerated and ported on the GPU architecture.
However, there are three other routines i.e., DPOTRF, DTR-
TRI and DLAUUM corresponding to the standard LAPACK
computational drivers, which require GPU support. While
the GPU version of the DPOTRF kernel has already been
developed and distributed in MAGMA [6], DTRTRI and
DLAUUM are not included yet in this numerical library and
have been newly implemented to lead this proposed research
work. Following the work done for the GPU DPOTRF
kernel, the GPU versions of DTRTRI and DLAUUM kernels
use the hybridization methodology, where both, CPU and

Algorithm 1 Tile sequential in-place Cholesky-based matrix
inversion (lower case). A is an NT ×NT tile matrix.

1: {Stage 1: Cholesky factorization}
2: for k = 0 to NT−1 do
3: DPOTRF(Ak,k)
4: for m = k+1 to NT−1 do
5: DTRSM(Ak,k, AT

m,k)
6: end for
7: for m = k+1 to NT−1 do
8: DSYRK(Am,k, Ak,k)
9: for n = k+1 to m−1 do

10: DGEMM(Am,k, AT
n,k, Am,n)

11: end for
12: end for
13: end for
14: {Stage 2: Calculate L−1}
15: for n = 0 to NT−1 do
16: for m = n+1 to NT−1 do
17: DTRSM(An,n, Am,n)
18: end for
19: for m = n+1 to NT−1 do
20: for k = 0 to n−1 do
21: DGEMM(Am,n, An,k, Am,k)
22: end for
23: end for
24: for m = 0 to n−1 do
25: DTRSM(An,n, Am,n)
26: end for
27: DTRTRI(An,n)
28: end for
29: {Stage 3: Compute A−1 = L−T ×L−1}
30: for m = 0 to NT−1 do
31: for n = 0 to m−1 do
32: DSYRK(Am,n, An,n)
33: for k = n+1 to m−1 do
34: DGEMM(AT

m,k, Am,n, Ak,n)
35: end for
36: end for
37: for n = 0 to m−1 do
38: DTRMM(Am,m, AT

m,n)
39: end for
40: DLAUUM(Am,m)
41: end for

GPU, work hand in hand. The inefficient and not parallel
portion of the numerical kernels (DTRTI2 and DLAUU2, re-
spectively) are handled by the CPU, while the high compute-
intensive operations are off-loaded to the GPU. Those two
routines will be eventually integrated into the next software
release of MAGMA.

Once the GPU versions of all numerical kernels are
available, a dynamic heterogeneous runtime environment
system is necessary to schedule in a load balanced manner



the various tasks across the processing units (CPU and/or
GPU), which is the topic of the next Section.

Algorithm 2 Tile Hybrid CPU-GPU in-place Cholesky-
based matrix inversion (lower case) using dynamic hetero-
geneous scheduler StarPU. A is an NT ×NT tile matrix.

1: {Stage 1: Cholesky factorization}
2: for k = 0 to NT−1 do
3: Starpu Insert Task(DPOTRF(Ak,k))
4: for m = k+1 to NT−1 do
5: Starpu Insert Task(DTRSM(Ak,k, AT

m,k))
6: end for
7: for m = k+1 to NT−1 do
8: Starpu Insert Task(DSYRK(Am,k, Ak,k))
9: for n = k+1 to m−1 do

10: Starpu Insert Task(DGEMM(Am,k, AT
n,k, Am,n))

11: end for
12: end for
13: end for
14: {Stage 2: Calculate L−1}
15: for n = 0 to NT−1 do
16: for m = n+1 to NT−1 do
17: Starpu Insert Task(DTRSM(An,n, Am,n))
18: end for
19: for m = n+1 to NT−1 do
20: for k = 0 to n−1 do
21: Starpu Insert Task(DGEMM(Am,n, An,k, Am,k))
22: end for
23: end for
24: for m = 0 to n−1 do
25: Starpu Insert Task(DTRSM(An,n, Am,n))
26: end for
27: Starpu Insert Task(DTRTRI(An,n))
28: end for
29: {Stage 3: Compute A−1 = L−T ×L−1}
30: for m = 0 to NT−1 do
31: for n = 0 to m−1 do
32: Starpu Insert Task(DSYRK(Am,n, An,n))
33: for k = n+1 to m−1 do
34: Starpu Insert Task(DGEMM(AT

m,k, Am,n, Ak,n))
35: end for
36: end for
37: for n = 0 to m−1 do
38: Starpu Insert Task(DTRMM(Am,m, AT

m,n))
39: end for
40: Starpu Insert Task(DLAUUM(Am,m))
41: end for

VI. THE DYNAMIC HETEROGENEOUS RUNTIME STARPU
StarPU [4] is a runtime system that dynamically schedules

tasks on accelerator-based platforms, such as multicore ar-
chitectures enhanced by GPUs accelerators. StarPU ensures
data availability and coherency between the memories of

different units, similar to the policy of the virtual shared
memory subsystem. This allows the programmer to focus
on what to do (e.g., choosing a scheduling strategy) while
the runtime system takes care of how to do it efficiently
(e.g., ensuring data transfers and coherency). The codelet is
one of the fundamental data structures of StarPU. It defines a
multi-version of the computational kernel that should be im-
plemented for each device e.g., CPU core and/or GPU (see
Figure 2). Applying a codelet on a data set means executing
a StarPU task, these tasks are asynchronous and the StarPU
runtime keeps track and appropriately handles any data
dependencies between them. Moreover, StarPU is able to ex-
tract parallelism from a sequential nested loop program. By
accordingly linking the sequential application with StarPU
and calling the Starpu Insert Task API, its runtime will run
the different tasks on the available heterogeneous processing
units. This is a huge gain in terms of user productivity, going
from sequential nested loops to parallel heterogeneous out-
of-order scheduling. Algorithm 2 represents the new parallel
version of the sequential Cholesky-based matrix inversion
described in Algorithm 1. The Starpu Insert Task API is
actually a wrapper to the user-defined codelet. Depending
on the availability of the GPU devices, StarPU may decide
to run the task on the CPU whenever possible (and vice
versa), which permit at the same time to exploit all available
resources of the heterogeneous system and reducing by the
same token the obvious load imbalance between CPU and
GPU computational power.

Figure 2. The StarPU framework for dynamic load-balanced scheduling
on heterogeneous systems.

The next Section presents the preliminary results of our
new implementation on heterogeneous GPU-based system.

VII. EXPERIMENTAL RESULTS

This Section highlights the preliminary results of our
new implementation of the Cholesky-based matrix inversion
using StarPU. All the experiments have been conducted on



a hybrid GPU-based system of 8 Intel Xeon X5550 CPU
cores running at 2.67GHz with 24 GB of memory and
enhanced with two nVIDIA Fermi C2070 GPUs (Fermi-
based, 448 CUDA cores each) with 6 GB of memory. The
application has been linked against nVIDIA CUDA 4.0
library to access the CUBLAS routines. Figure 3 shows the
performance comparison in Gflop/s of our heterogeneous
version against the same routines distributed in MAGMA
V1.0 (single CPU-GPU support only), in PLASMA V2.4
using tile algorithms on the 8 available cores (homogeneous
x86 multicore architecture support only) and in LAPACK
V3.2 linked with multithreaded Intel MKL BLAS V10.2
using also the 8 available cores. Our high performance
implementation achieves almost half a Tflop/s (448 Gflop/s),
which corresponds to 5 and 6-fold improvement compared
to the equivalent routines from MAGMA and PLASMA, re-
spectively, and 10-fold improvement compared to LAPACK.
Furthermore, compared to MAGMA, our implementation is
not memory-limited and can scale beyond the actual memory
available in the GPU devices, thanks to the cooperative
computing work done with the available x86 cores.
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Figure 3. Cholesky-based matrix inversion (DPOTRF + DTRTRI +
DLAUUM) on eight Intel Xeon X5550 @ 2.67GHz and two nVIDIA Tesla
C2070 GPU cards.

VIII. CONCLUSION AND FUTURE WORK

This paper presents preliminary results of our Cholesky-
based matrix inversion on x86 architecture enhanced with
GPU accelerators using the heterogeneous dynamic runtime
system StarPU. Our implementation (448 Gflop/s) results in
up to 5 and 6-fold improvement compared to the equivalent
routines from MAGMA V1.0 and PLASMA V2.4, respec-
tively, and 10-fold improvement compared to LAPACK
V3.2 linked with multithreaded Intel MKL BLAS V10.2,
with a matrix size of 24960× 24960. There are many new

directions to deeper study this algorithm in the context of
StarPU. The authors plan (1) to expand the analysis of the
actual directed acyclic graph of this three-stage algorithm,
(2) to generate the execution traces, (3) to evaluate the
application scalability on a cutting-edge NUMA system
composed of tens of cores with multiple GPU accelerators
and (4) to study the impact of GPU Direct communication
brought by CUDA 4.0.
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