
Parallelization of Complex Event Processing on GPU

Patel Kuldip L.∗ Savalia Jay M.∗ Jaya Sreevalsan-Nair∗

∗ International Institute of Information Technology,
Bangalore, India.

{kuldipkumar.patel, jay.savalia}@iiitb.org, jnair@iiitb.ac.in

Abstract

Publish/subscribe is a paradigm used in real-time
enterprise applications, such as job portals, where an
event processing system is the key element. It allows
applications to process the incoming event streams and
applies relevant techniques in real-time for making
efficient and quick decisions. Achieving scalability
and high performance under excessive scale and load
is a challenging problem. The most computationally
intensive module in the event processing system is the
processing and matching engine which handles the
important task of connecting decoupled entities. We
propose an algorithm and its parallel implementation
to utilize the GPU for event matching algorithm which
results in high throughput.

1. Introduction

A job portal consists of three significant compo-
nents: a job provider, a job subscriber and the process-
ing logic. The job provider posts a job with certain
specific criteria, the job subscriber subscribes to the
job-portal with a specific skill set and the processing
logic runs a matching algorithm to match available
jobs to available subscribers. Current implementations
of such a system restrict the jobs posted to the job
portal to confirm to a particular set of subscribers who
fulfill the requirement for that job. The existing ap-
proach to building the processing logic is a sequential
search of a qualification from a query for all regis-
tered job subscribers, and repeat the process for all
required qualifications. This approach requires several
disk accesses owing to high frequency of querying
to a database, and hence results in low throughput.
We present an alternative model which reduces the

computation time in the processing logic module,
thus resulting in higher throughput, in comparison to
existing approaches.

Publish/subscribe is a powerful paradigm for infor-
mation dissemination from publishers (event produc-
ers) to the subscribers (event consumers) in the real
world [1]. A data event specifies values pertaining to a
set of attributes associated with the event. Subscribers
register their interests in future events by using a set
of predicates over the event attributes. Upon receiving
an event published by a publisher, the system matches
the event to the subscriptions, which serve as filters,
and deliver results to the event subscribers [2], [3].

A job portal is an event processing problem that
is to some extent similar to publish/subscribe model.
In the case of a job portal, the job provider acts
as a publisher of events and the job subscriber is
equivalent to a subscriber for that particular event. An
ideal implementation of a job portal implies efficient
and scalable implementation of its various modules,
such as, subscription management, event matching,
and event delivery to the set of job subscribers.

The graphics processing unit (GPU) is a multi-
threaded processor containing hundreds of processing
elements known as Scalar Processors (SPs). Eight SPs
together form a group called the Streaming Multi-
processors (SMs). These eight SPs execute in Single
Instruction Multiple Thread (SIMT) fashion. Hence, all
the SPs in an SM execute the same instruction at the
same time [4]. As the memory access pattern is known
in advance and there is massive data reuse in the
algorithm, we can take advantage of the faster shared
memory to hide latency of global memory access. A
job portal application being heavily task-parallel, is an
ideal application for parallelization using the GPU.

We had implemented a prototype of a distributed



publish/subscriber model for a job portal using the
GPU. We analyz our work and report the priliminary
results in the following sections.

2. System Design

In this section, we elaborate on the overview of a job
portal system based on the publish/subscribe model.
We briefly discuss each component of the system.

2.1. Event (Job)

A job in the job portal application is equivalent to an
event in a publish/subscribe system and hence, can be
treated as an event. We shall be using job and event
interchangeably throughout our paper. A job, posted
in the job portal by a job provider, specifies certain
requirements for a potential match for that job. We can
safely assume that the requirement parameters of any
job are the descriptive attributes of the event. These
parameters include educational qualifications, skills,
experience, etc.. We express these parameters in bit
values, that is, 1 or 0, which indicate the presence or
absence of an attribute for a given job, respectively.
Thus, a bit string representation of an event or a
job takes into consideration all possible requirement
parameters that is relevant to the job portal. Figure 1
shows the vector representation of a job, where each
element corresponds to a particular requirement. As

Figure 1: Vector representation of job or an event.

shown in Figure 1, this particular job or event has
the requirements for a candidate holding a B.Tech.
degree who is working in software development and
maintenance, with proficiency in Java and MySQL.
So in the event parameters rather than storing entire
keyword, we make the keyword position fixed and
indicate its presence or absence of the keyword using
1 or 0, respectively, thus representing an event using
a bit-string representation. Figure 1 shows a simple
representation of the parameter attributes used for a
job. The disadvantage of such a representation is that

the length of the representative bit-string increases in
size exponentially with addition of jobs, and also the
bit-string representations need not be unique for a job
description. Since our implementation is a prototype,
we do not address these issues in the scope of this
work.

2.2. Subscriber (Job Subscriber)

Similar to an event, a subscriber can also be de-
scribed by representing its skill set and qualifications
in a bit-string, using 1 or 0 to indicate presence or ab-
sence of that skill set in the subscriber profile, respec-
tively. For consistent representations, in our prototypi-
cal implementation, we assume that the describing key-
words are same for the subscriber as well as the job. As
shown in the example of a job in Figure 1, a subscriber
with the skill set <B.Tech,Software,JAVA,MySQL>
may be represented similarly.

2.3. Event-Subscriber Relationship

We use the notation bAi for bit-value, which can
take values 0 or 1, for subscripts A indicating job
(A = J) or subscriber (A = S), and i indicating the
location in the bit-string representation. We define the
set BJ1 = {i|bJi = 1, for BJ = bJ1bJ2 . . .bJn} for a bit-
string representation of a job BJ , with n parameters,
where BJ1 is the set of all locations of 1’s in the
bit-string BJ . Similarly for the subscriber represented
by the bit-string BS, we define the set BS1 = {i|bSi =
1 for BS = bS1bS2 . . .bSn}.

There can be three cases of subscriber-job relation-
ship, considering the bit positions containing 1’s in
the vector representations of a subscriber and of a job,
respectively.

1) A subscriber S is “aptly qualified” for a job J,
if the vector representation of subscriber exactly
matches for all the bit positions that are 1’s in
that of the job, that is, BJ1 = BS1.

2) A subscriber S is “underqualified” for a job J, if
the vector representation of subscriber does not
match for all the bit positions that are 1’s in that
of the job, that is, (BS1∩BJ1)⊂ BJ1.

3) A subscriber S is “overqualified” for a job J, if
the vector representation of subscriber matches
for all the bit positions that are 1’s in that of the
job as well as has additional 1’s, that is, BJ1 ⊂
BS1.

Our system is designed to handle matches when a
subscriber is either “aptly qualified” or “overqualified”



for a job. The information of the subscribers is stored
in a database and we assume that all subscribers are
available prior to the arrival of events.

2.4. Cluster

For scheduling, we had to find the set of subscribers
that satisfies a set of criteria specific to the job. To do
that we had to check the absence or presence of all
the parameters required for every registered subscriber.
This leads to a large number of comparisons and thus
the matching process becomes highly computationally
intensive. To alleviate this problem, we had used clus-
tering. Once similar types of subscribers are clustered,
we can easily reduce the computation by applying
search to specific clusters which are relevant to the
given job. Another acceptable advantage of clustering
is reduction of data transfer between the GPU and
the CPU, which the clustering methods achieve by
removing subscribers which are outliers.

In our prototype, we use a very rudimentary clus-
tering algorithm. We divided all subscribers based on
their skill sets, and we clustered them if they contained
the same set of skills. Thus we clustered the sub-
scribers based on the 1’s in the bit-string representation
of the subscribers, for e.g. presence of same parameters
for certain professions, e.g. medicine, law, engineering,
etc. causes the subscribers to be naturally clustered.
In effect, we have clustered the subscribers based
on their profession or specialization, viz. engineers,
doctors, lawyers, pharmacists. For e.g., for matching
a job suitable for doctors (in the medical field), we
eliminated a set of subscribers, who are not related to
the medical field, thus reducing the number of potential
subscribers we need to consider. We assume that in our
job portal, the set of the subscribers is not dynamic and
hence the overhead to create and update the clusters
will be minimal.

3. Implementation

In this section, we explain the actual implementation
of each component used for the event matching algo-
rithm. Our system is divided into two parts: Scheduler
and EventMatchingAlgorithm.

3.1. Scheduler

In a job portal, the job arrival rate is not predictable.
We can assume that the arrival of different jobs are in-
dependent events. Hence, whenever a job is available,
we first place it in the database where incoming jobs

are stored. At a certain instant of time, the scheduler
will start processing the database to find similar jobs
in the context of its description parameters.

After finding similar events, the scheduler will dis-
patch them to the event matching algorithm along with
the specific cluster of subscribers to initiate processing.
Figure 2 shows an outline of the working of scheduler.

3.2. Event Matching Algorithm

Matching algorithm accepts two inputs.
Input−1: Similar jobs (event pool) which come from
the scheduler.
Input−2: Cluster of relevant subscribers for given
Input-1.

We can have two implementations of the event
matching algorithm: (a) sequential, and (b) parallel.

3.2.1. Sequential Implementation. The sequential
implementation of the matching algorithm can be done
in two ways:

1) Per-event match for all subscribers.
2) Per-subscriber match for all events.

If there are m events and n subscribers, the sequential
implementation using any of the two approaches, will
have a time complexity O(n*m). Algorithm 1 shows
pseudo code for first approach.

We could interchange the for-loops in algorithm 1
and obtain the algorithm for the second approach, i.e.
per-subscriber match for all events.

Figure 2: Outline of Scheduler.



for event from event pool do
for subscriber from cluster do

if Ismatch(event,subscriber) then
eligible subscriber for event.

end
else

ineligible subscriber for event.
end

end
end
Algorithm 1: Per-event match all Subscribers.

3.2.2. Parallel Implementation. In the parallel im-
plementation approach, matching algorithm can be
implemented using one of the following models:
A. Thread per event.
B. Thread per subscriber.
C. Thread per event-subscriber pair.

We had implemented these models on the GPU
using CUDA. We explain the implementation details
of each of the models:
• Model A: Thread per event

This model creates a thread per event, that is, if
there are m events and n subscribers, then this
model creates m threads. Each thread corresponds
to one particular event and a list of subscribers
(Input-2). The thread compares skill set of an
event with the skill set of all the subscribers. This
comparison results in a set of subscribers which
satisfy the event criteria, eligible for that event.
An abstract view of the composition of such a
thread is as shown in Figure 3(a).

• Model B: Thread per subscriber
As opposed to the event-centric model A, in
model B we create threads per subscriber. Thus,
if there are m events and n subscribers then this
model creates n threads. Each thread has one
particular subscriber and list of events. The thread
compares the skill set of a subscriber to the skill
set of all the events. This comparison results in
set of events for which subscriber is eligible. An
abstract view of the composition of such a thread
is as shown in Figure 3(b).

• Model C: Thread for each event-subscriber
pair
For efficient utilization of GPU resources, large

number of threads should be created and de-
ployed. Hence we use a model which creates
thread for each pairing of an event and a sub-
scriber. If there are m events and n subscribers,
then this model creates (m ∗ n) pairs, and hence,

(a) (b)

Figure 3: Models for Parallel Implementation of Job
Matching Algorithm: (a) Model-A: Thread-per-event
Model, (b) Model-B: Thread-per-subscriber Model.

(m ∗ n) threads. Each thread compares the skill
set of a particular event with that of a particular
subscriber. Each comparison makes a decision for
eligibility of subscriber for that event. An abstract
view of the composition of such a thread is shown
in Figure 4.

3.2.3. Comparison of the Models for Parallel Im-
plementation. Parallel implementation of model-A
and model-B create heavily loaded threads, that is
every thread has a large number of computations to do.
If m� n, given m events and n subscribers, model-A
results in less number of threads which are heavily

Figure 4: Model-C: Thread-per-(event-subscriber-pair)
Model for Parallel Implementation of Job Matching
Algorithm.



loaded. In such a case, all the GPU cores are not
utilized fully and hence is an inefficient model for
parallelization using the GPU. Model-B also suffers
from a similar problem, when m� n.

To overcome the problem of under-utilization of
GPU cores, we have introduced model-C which in-
volves creation of several lightly-loaded threads, im-
plying that every thread has less amount of work to
do. Each thread has only one comparison to make,
which decides the eligibility of a subscriber for the
corresponding event. Hence producing an optimum
number of lightly loaded aligned threads increases the
utilization of the GPU cores. Additionally, this model
is designed to use the shared memory as a buffer to
hold the data and allow non-coalesced manipulation
of data, but coalesced access when writing to global
memory. Using the shared memory as a buffer ensures
that the accesses to the global memory while writing
continue to remain coalesced. The idea is that the
memory controller performs efficiently if it accesses
a series of memory locations and provide content
to the threads of a half-warp, instead of exclusive
accesses for each thread. If the threads in a block are
accessing consecutive global memory locations, then
all the accesses can be coalesced, that is, combined to
a single request by the hardware. Coalescing accesses
to global memory results in low latency. In model-
C, a single pair of event-subscriber contributes to a
thread and the result of the comparison performed in
a thread is written back to the global memory again
in a coalesced manner.

4. Results and Analysis

We implemented models A, B, and C, using
NVIDIA GeForce GTX 460 processor which has 7
SMs. It has a global memory of 1 GB. Our preliminary
results in Figure 5 show that the speedup achieved by
the parallel execution of the matching algorithms on a
GPU for different datasets. We obtained a speedup of 3
using model-C. The GPU starts to outperform the CPU
when n blocks of large threads, where n > 1, process
the data allowing the hardware to switch between the
blocks to hide the latency of the access to the global
memory. Figure 5 also shows that peak performance
can be achieved by keeping the GPU fully utilized by
using an optimum number of threads.

5. Conclusions and Future Work

We implemented both the sequential version of our
job-matching algorithm on the CPU as well as its par-

Figure 5: Speedup on GPU Using Parallel Implemen-
tation.

allel version using the GPU. We have implemented the
latter using the three proposed models of the matching
algorithm. We have also recorded our preliminary anal-
ysis of the performance. The parallel implementation
using GPU has a higher throughput when there are a
reasonably large number of threads used. In the future,
we plan to extend this algorithm to using multiple
GPUs. We further propose to optimize the clustering
operation in order to optimally reduce the number of
comparisons, the amount of data transfer among GPU
and CPU and in turn harness the capabilities of the
GPUs better.

Acknowledgments

The authors would like to thank International In-
stitute of Information Technology, Bangalore, for fa-
cilitating the research activities for this paper. One of
the authors, Mr. Savalia Jay M., unfortunately passed
away on October 1, 2011.

References

[1] Y. Zhu and Y. Hu, “Ferry: A P2P-Based Architec-
ture for Content-Based Publish/Subscribe Services,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 18, pp. 672–685, 2007.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-
M. Kermarrec, “The Many Faces of Publish/subscribe,”
ACM Comput. Surv., vol. 35, pp. 114–131, June 2003.

[3] A. Adi, D. Botzer, G. Nechushtai, and G. Sharon, “Com-
plex Event Processing for Financial Services,” IEEE
Services Computing Workshops, vol. 0, pp. 7–12, 2006.

[4] “NVIDIA CUDA Programming Guide.” [Online]
Available at: http://developer.nvidia.com/
getting-started-parallel-computing, [Accessed Feb
16, 2011].


