
Controlled duplication for scheduling real-time
precedence tasks on heterogeneous

multiprocessors
Jagpreet Singh* and Nitin Auluck

Department of Computer Science & Engineering
Indian Institute of Technology, Ropar

Rupnagar, India, 140001
Email: {jagpreets, nitin}@iitrpr.ac.in

Abstract—Duplication based heuristics have been
used for scheduling precedence constrained tasks
with significant communication in them. Duplicating
heavily communicating subtasks of a task on to
the same processor improves the schedulability as
a larger number of tasks meet their deadlines.
However, this reduction comes at the cost of extra
computing power required for duplicating subtasks.
In this paper, we propose a novel real-time con-
trolled duplication based heuristic called RTCDA for
scheduling such tasks on heterogeneous multipro-
cessors. We observe that duplication is not always
required. The decision whether to duplicate or not
is decided by the deadlines of the tasks. If a task
can meet its deadline without duplication, then it
creates more schedule holes and vice versa. RTCDA
can utilize these schedule holes to improve the success
ratio. Simulation results show that the proposed
algorithm gives a better performance than other
similar algorithms.

I. INTRODUCTION

Heterogeneous distributed real-time systems
(HDRTS) have gained popularity as they allow
applications with strict timing constraints to run on
high performance and low cost hardware of varying
capabilities. The timing constraints in HDRTS’s
are fulfilled by employing an efficient real-time
scheduler. The scheduling algorithm allocates and
schedule jobs to ensure that all the tasks meet their
deadlines and the overall schedulability improves.

*PhD Research Scholar, Student Author.

The problem on real and non-real time systems
differs on the basis of the objective of the algo-
rithm. Non real-time algorithms aim to minimize
the maximum schedule length, or makespan [1]
whereas real-time algorithms aim to increase the
schedulability.

Some non-real time scheduling approaches have
been extended to work on real-time systems [1],
[2]. Duplication has proved as a vital heuristic for
minimizing the makespan [3]. By duplicating the
communicating subtasks on a single processor, the
interprocessor communication costs can be mini-
mized, which reduces the makespan. Duplication
is a well researched heuristic for non real-time
scheduling of a single task graph on heterogeneous
multiprocessors [1], [4], [5].

Employing duplication for improving the
schedulability has received some attention by
researchers. Ranaweera et al. [6] used duplication
for enhancing the schedulability of periodic time
critical applications for pipelined execution on
heterogeneous systems. Auluck et al. [2], [7]
proposed algorithms that are extensions of the
original duplication strategy proposed in [1]. The
algorithm proposed in [2], called RT-DBA, (real-
time duplication based algorithm) comes closest
to this work. RT-DBA has a few shortcomings
that we have tried to address. First of all, it
performs duplication for all the tasks, which may
not always be required as our motive is not to
minimize the makespan, but to meet the deadlines.
A late deadline can be met without duplication.



Excessive duplication can reduce possible schedule
holes created due to precedence delays, which can
be utilized by the other tasks. Secondly, RT-DBA
does not consider the current processor-scheduling
load. Finally, it does not utilize schedule holes for
scheduling or duplication. We observe that doing
so can result in a better utilization of computing
power.

This paper proposes a novel static real-time
Controlled Duplication algorithm (RTCDA) for
scheduling of periodic independent precedence-
constrained tasks. It uses schedule holes for
scheduling and duplication. The precedence-
constrained tasks are represented by a directed
acyclic graph (DAG) [2]. To the best of the authors
knowledge, the concept of controlled duplications
has not been used in real-time systems before.

A. Motivation

The design of any duplication heuristic in a non
real-time system has two significant steps: where
and how duplication is performed. Mainly, there
are two strategies which are being used for the
first step: duplicating subtasks in schedule holes
[4] or allocating extra space other than holes [1].
The first approach adds more to the computational
complexity of the algorithm but is more effective
than the second. A number of approaches are
used for the second step: 1) duplicate a single
immediate predecessor (SIP) [4], 2) duplicate a
chain of predecessors till the root node (COP) [1],
3) duplicate the immediate predecessors first and
then the ancestors (IPFA) [5].

Duplication in real-time systems adds two more
challenges to the above: when and how much
duplication is to be performed. The first challenge
has arisen because of our objective of meeting
deadlines. In case, the deadline of a task is higher,
there are enough chances to meet it without dupli-
cating any subtask, which can create more schedule
holes for other tasks to use, hence, increasing the
schedulability. If it is decided to perform dupli-
cation, our motive is to control the amount of
duplication according to the deadline, which is the
second challenge. In this paper, we explore the first
three challenges. Due to the space constraint, we
leave the fourth challenge for future work.

The remainder of this paper is organized as

follows: the system model is discussed in Section
2. Section 3 discusses the algorithm. Some initial
simulation results are described in Section 4. Fi-
nally, section 5 concludes the paper.

II. SYSTEM MODEL

The system consists of a set P of m heteroge-
neous processors and a task set T of n precedence-
constrained tasks. All the processors p ∈ P are
networked with a fully connected contention free
network. It is assumed that the local memory of
a processor is used for data exchange between
subtasks assigned to it. A vector of the form
G(Vi, Ei, µi, ci), rti, pei, dli is used to represent a
task ti ∈ T . The first element of the vector is the
directed acyclic graph G. The node set Vi represent
the jobs1 sijk (k is used for instance, Vi remains
the same during instances) of ti and the edges
in Ei, the communications between the jobs. An
edge eij ∈ E represents the communication from
node sijk to node silk. A positive weight µi(j, pq)
is associated with node sijk which represents its
computation cost on processor pq ∈ P and the non-
negative weight cij, l associated with edge eij ∈ E
represents the communication cost from sijk to
silk. The elements µi and ci are matrices of the
order vi × m and vi × vi (vi is the number
of subtask in task ti). We further assume that
the DAG has single entry and exit nodes. If a
DAG has multiple entry (exit) nodes then they are
connected to zero-cost pseudo entry (exit) nodes
with zero-cost edges. Performing this operation
does not affect the final schedule. Next, rti is the
release time of the task ti and pei represent its
period. The deadline dli is the relative end-to-end
deadline of the task ti, i.e. the exit node si(exit)k
of the kth invocation of task ti should finish by
the absolute time dlik = rtik + dli, where rtik(
rt(ti) + (k − 1) × pe(ti)

)
and dlik are the

release time and deadlines of the kth invocation of
the task ti.

III. REAL-TIME CONTROLLED DUPLICATION

ALGORITHM (RT-CDA)

The proposed algorithm, RT-CDA, is a com-

1(the terms node, job and subtask have been used inter-
changeably)



bination of list-based and duplication scheduling
heuristics. The complete strategy can be divided
into three steps. First, the separate priority schemes
for tasks ti ∈ T and subtasks sijk ∈ Vi are
described. These priorities direct the scheduler to
select tasks and then subtasks for allocation to the
processors. Next, a dynamic upper bound scheme
is proposed. The question of when to duplicate can
be solved by the proposed dynamic upper bound.
The duplication is performed using IPFA [5] by
utilizing schedule holes. The third step explains the
complete scheduling scheme based on the upper
bound and the deadlines.

A. Assigning Priorities

The tasks in the task set are considered for
scheduling one at a time and are prioritized accord-
ing to well known real-time scheduling heuristics:
earliest deadline first (EDF) and rate-monotonic
(RM) [8]. After a task instance tik is released on
time rtik, it is inserted into the tasks schedule
queue (SQt) according to EDF or RM. Both EDF
and RM priority schemes are compared in the result
section.

After the selection of a task ti for scheduling,
all the subtasks sijk of ti are inserted in the
subtasks schedule queue (SQst) according to non-
decreasing order of their b-level (bl(sijk)) values.
The ties are broken using s-level (sl(sijk)) values.
The b-level (s-level) stands for the bottom (start)
level, which is evaluated recursively in a bottom-
up (top-down) fashion, traversing of the task graph
starting from the exit (entry) node as shown by
following equations.

bl(sijk) = µi(j)+ max
silk∈succ(sijk)

(
ci(j, l)+bli(silk)

)
(1)

sl(sijk) = max
silk∈pred(sijk)

(
ci(l, j)+sli(silk)+µi(l)

)
(2)

In the equations above, bl(si(exit)k) = µi(exit)
and sl(si(entry)k) = zero, whereas succ(sijk)
and pred(sijk) is the list of immediate succes-
sors and predecessors of sijk and µi(j) represents
the average execution cost of subtask sijk. The
bl(sijk) value is the critical path from the subtask
sijk to si(exit)k. We have used bl as the primary
priority parameter because, the critical path based

algorithms are known to generate better schedules.
Secondly, sl is basically the distance of a subtask
sijk from si(entry)k. The subtask with lower sl is
given higher priority, as it is present at a higher
level in the task graph and should be scheduled
first. It is worth noting that sorting the nodes
according to bl, also performs a topological sort
on all the sijk ∈ Vi, which satisfy the precedence
constraints.

B. Upper Bound

In our scheme, for every kth invocation of task
ti, we define a dynamic upper bound (UBik). The
UBik is the time up to which the task tik can
be definitely scheduled even without duplication.
This bound is dynamically computed at run time
considering the release time rtik of tik. To further
strengthen the UB, the algorithm also considers
the current computing load (subtasks already being
scheduled).

The key idea for evaluating UBik is to schedule
all the subtasks sijk ∈ Vi of a task tik on a
single processor (pq) by using holes in the sub-
tasks already scheduled on pq. After this step we
will get UBik of task tik on processor pq i.e.
UBikq = EFT (si(exit)k), where EFT (si(exit)k)
is the earliest finish time of the exit node of tik.
The UBik for the task tik can be evaluated using
UBik = min

pq∈P
UBikq.

As, UB is a trivial bound, it may not seem
effective in the first place. But, the authors have
observed that, even a popular scheduling algorithm
heterogeneous earliest finish time (HEFT) [9] with
single duplication or without duplication, generate
schedules more than this UB for tasks having
higher CCR values. Hence, UB becomes more
effective with increasing CCR values as the tasks
are scheduled on a single processor because of high
communication cost between the nodes. This bound
is used as a key element in our algorithm. A task tik
having an absolute deadline (rtik + dli) ≥ UBik,
can be scheduled without duplication by RTCDA.

C. RTCDA Algorithm

The proposed algorithm RTCDA is an extension
of the non-real time scheduling algorithm called
heterogeneous earliest finish time (HEFT) [9].



HEFT works on a single task graph and schedules a
subtask on to the processor which finishes it at the
earliest. Unlike HEFT, RTCDA works on periodic
real-time task sets. Conceptually, both algorithms
differ on the length of the generated schedule.
The RTCDA algorithm is driven by the UB. In
the worst case, it makes sure that the schedule
for a single task instance always follow its UB.
However, HEFT has been observed to generate
schedules more than the UB.

The algorithm begins by calculating the hyper
period (hp) of the task set T . The hp is evaluated as
the least common multiple of all tasks periods. The
schedule is generated from zero time unit till the
hp. Next, the ready tasks are inserted into the SQt

according to EDF or RM. A task tik (if present), is
fetched from the head of the SQt for processing.
At first, the UBik is evaluated. Then, the algorithm
checks whether the task tik deadline is greater than
or equal to the UBik i.e. dlik ≥ UBik. If it is,
then RTCDA can meet the deadline of tik without
duplication, otherwise it schedules the task with
duplication. The subtasks sijk ∈ Vi are inserted
into the SQst for processing according to their
b-level (bl) and s-level (sl). Before scheduling,
RTCDA calculates the earliest start time of all
sijk ∈ Vi (EST (sijk, pub)) on processor pub if
they all execute according to their order in SQst

on processor pub. The pub represents the processor
on which the current task tik has the UBik.

A subtask sijk is fetched from the head of the
SQst. Next, the algorithm finds the earliest finish
time of sijk with or without duplication as decided
by the UBik. If the processor on which sijk has
the earliest finish time is same as that of pub,
sijk is scheduled on pub. In the other scenario,
RTCDA makes sure that, scheduling sijk on any
processor pz other than pub does not increase the
worst schedule length i.e. UB by satisfying the
following equation for all {silk ∈ succ(sijk)}.

EFTsijk + ci(j, l) ≤ EST (silk, pub) (3)

If a subtask sijk satisfies the above equation then
it is scheduled on pz other wise on pub.

During the evaluation of EFT (sijk) on a pro-
cessor pz , the algorithm checks for the possibil-
ity of duplicating predecessors if it improves the
EFT (sijk) on pz . The RTCDA is flexible in the

selection of how duplication is performed. We
have used the IPFA as proposed in [5]. In this
strategy, the immediate predecessors silk of subtask
sijk are considered for duplication in the schedule
holes. The predecessors are selected for duplication
according to non-increasing order of the time they
delay sijk. Next, the algorithm recursively attempts
to duplicate the predecessors of any duplicated
subtasks. Thus, as many ancestors as allowable are
duplicated, in a breadth-first fashion. Duplication
recursively continues until no further duplication
is possible.

IV. RESULTS

In this section, we present the comparative analy-
sis of RTCDA-RM/EDF with the two other relevant
algorithms: RTDBA and RTHEFT-RM/EDF. RT-
DBA is proposed in [2] with only rate-monotonic
scheduling where as RTHEFT is our real-time ex-
tension of HEFT [9] with duplication. Importantly,
the time complexity of RTHEFT is same as that
of RTCDA. All the algorithms are tested on three
thousand task sets (500 per graph) generated with
a well known real-time benchmark, Task Graphs
For Free (TGFF) [10]. The parameters used for the
simulation are; Number of tasks in a task set (4-
400), Number of subtasks in a task (10-1000), CCR
(1,3,5,7,10) and Utilization (0.1,0.3,0.5,0.7,1). For
all these preliminary results the task deadlines
have been set equal to the their periods. All the
algorithms have been implemented in C++.

Figures 1 and 2 show the effect of varying CCR
and utilization (UT) on the algorithms. The utiliza-
tion of the task set is measured as the summation of
the utilizations of all the tasks in the task set. For a
single task, it is defined as UTi = total computationi

periodi
,

whereas total computationi is the sum of the
averages of the subtasks execution costs in the task.

The results show that RTCDA offers better per-
formance than the others. It has remained con-
sistent during variation in the CCR values. Even
at higher utilizations, UT=0.6 and UT=0.8, it has
achieved guarantee ratios (GR or SR) of 95%
and 75% respectively, which is at minimum 20%
more than all others. The guarantee ratio is defined
as GR = number of tasksets meeting deadlines

total number of tasksets . The
primary reason of this performance, is controlled
duplication, which leads to more schedule holes



 

Fig. 1. Effect of CCR on the performance of RTHEFT-RM/EDF, RTCDA-RM/EDF, RTDBA

 

Fig. 2. Effect of Utilization on the performance of RTHEFT-RM/EDF, RTCDA-RM/EDF, RTDBA

for the other tasks to use. With increasing CCR,
the schedule holes also increase, which is why
RTCDA is more effective at higher CCR and UT
values. We also observe that all other algorithms
dominate RTDBA. This is because, RTDBA does
not utilizes schedule holes for the sake of lower
complexity. With the increase in utilization (Figure
2), the success ratios of all the algorithms decrease.
But, again RTCDA achieves an SR of more than
75% for a higher utilizations of 0.7 and 0.8.

V. CONCLUSION AND FUTURE DIRECTIONS

From the simulations, we observe that duplica-
tion is not always required for the scheduling of
real-time static tasks. Instead, it (duplication) de-
pends on the deadlines of the tasks. Also, the upper
bound strategy has effectively answered the when
duplication challenge. In the future, the fourth du-
plication challenge of how much needs to be looked
at. According to our observation, controlling the
amount of duplication can further improve the suc-
cess ratio. Furthermore, an extensive comparison
analysis is required which should include different
duplication strategies, variation in deadlines and
release times and different comparison metrics.

REFERENCES

[1] R. Bajaj and D. P. Agrawal, “Improving scheduling
of tasks in a heterogeneous environment,” IEEE Trans.
Parallel Distrib. Syst., vol. 15, pp. 107–118, February
2004.

[2] N. Auluck and D. Agrawal, “Enhancing the schedula-
bility of Real-Time heterogeneous networks of worksta-
tions (NOWs),” Parallel and Distributed Systems, IEEE
Transactions on, vol. 20, no. 11, pp. 1586–1599, 2009.

[3] I. Ahmad and Y.-K. Kwok, “On exploiting task du-
plication in parallel program scheduling,” IEEE Trans.
Parallel Distrib. Syst., vol. 9, pp. 872–892, September
1998.

[4] S. Bansal, P. Kumar, and K. Singh, “Dealing with
heterogeneity through limited duplication for scheduling
precedence constrained task graphs,” J. Parallel Distrib.
Comput., vol. 65, pp. 479–491, April 2005.

[5] S. Baskiyar and C. Dickinson, “Scheduling directed a-
cyclic task graphs on a bounded set of heterogeneous
processors using task duplication,” J. Parallel Distrib.
Comput., vol. 65, pp. 911–921, August 2005.

[6] S. Ranaweera and D. P. Agrawal, “Scheduling of periodic
time critical applications for pipelined execution on
heterogeneous systems,” in Parallel Processing, Interna-
tional Conference on, Los Alamitos, CA, USA, 2001, p.
0131.

[7] N. Auluck, “An integrated scheduling algorithm for
precedence constrained hard and soft Real-Time tasks
on heterogeneous multiprocessors,” in Lecture Notes in
Computer Science, vol. Volume 3207/2004, 2004, pp.
199–207.

[8] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a Hard-Real-Time environment,”
Journal of the ACM (JACM), vol. 20, no. 1, pp. 46 – 61,
1973.

[9] H. Topcuouglu, S. Hariri, and M. Wu, “Performance-
effective and low-complexity task scheduling for hetero-
geneous computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 13, pp. 260–274, 2002.

[10] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: Task
graphs for free,” 1998.


