
Cost Efficient PageRank Computation using GPU
Praveen K.∗, Vamshi Krishna K.†, Anil Sri Harsha B.‡, S. Balasubramanian, P.K. Baruah

Sri Satya Sai Institute of Higher Learning, Prasanthi Nilayam, India
{praveen.kkp, k.vamshi.krish, anilharsha.b}@gmail.com,

{sbalasubramanian, pkbaruah}@sssihl.edu.in

Abstract—The PageRank algorithm for determining the
“importance” of Web pages forms the core component of
Google’s search technology. As the Web graph is very large,
containing over a billion nodes, PageRank is generally
computed offline, during the preprocessing of the Web
crawl, before any queries have been issued. Viewed math-
ematically, PageRank is nothing but the principal Eigen
vector of a sparse matrix which can be computed using any
of the standard iterative methods. In this particular work,
we attempt to parallelize the famous iterative method, the
Power method and its variant obtained through Aitken
extrapolation for computing PageRank using CUDA. From
our findings, we conclude that our parallel implementation
of the PageRank algorithm is highly cost effective not only
in terms of the time taken for convergence, but also in
terms of the number of iterations for higher values of the
damping factor.

Index Terms—PageRank, Principal Eigenvector, Eigen-
value, Extrapolation, Markov Matrix, CUDA, CUBLAS,
CUSPARSE.

I. INTRODUCTION

The evolution of GPU technology has outperformed
the traditional Parallel Programing paradigms, introduc-
ing a new phase in the field of scientific computing. GPU
based solutions have outperformed the corresponding
sequential implementations by leaps and bounds. Par-
ticularly, for scientific computing applications, they pro-
vide a very valuable resource to parallelize and achieve
optimum performance.

Determining a page’s relevance to query terms is a
complex problem for a search engine and this decides
how good a search engine is. Google solves this complex
problem through its PageRank [1][2] algorithm which
quantitatively rates the importance of each page on the
web, allowing it to rank the pages and thereby present to
the user, the more important (and typically most relevant
and helpful) pages first.

∗Student Author
†Student Author
‡Student Author

As the Web graph is very large, containing over a
billion nodes, PageRank is generally computed offline,
during the preprocessing of the Web crawl, before any
queries have been issued [3]. In this particular work,
we parallelized a customized serial implementation of
power method and a variant of it obtained through Aitken
extrapolation [4] for computing PageRank.

The core component in the power method for com-
puting PageRank is the Sparse Matrix-Vector product
(SpMV) and certain vector-vector operations. The paral-
lel implementation was done using the CUDA program-
ing model, developed by NVIDIA. In this parallel imple-
mentation, we exploited the power of CUBLAS [5] and
CUSPARSE [6] routines for the same. From our results,
it is evident that the parallel implementation outperforms
the serial equivalent in terms of both the factors viz.
convergence time and number of iterations for specific
values of the damping factor (α). We validated our work
on publicly available datasets [7] [8], which are matrices
that represent web graphs of sizes varying from 884 x
884 to 281903 x 281903.

The remainder of this paper is organized as follows.
Section II reviews the related work done in this area.
Section III, gives an overview about the power method
and it’s extrapolation variant for computing PageRank.
Section IV discusses the methodology used to parallelize
the serial implementation. The experimental results ob-
tained are discussed in Section V. Finally we point to
some conclusions and future work that can be undertaken
in Section VI.

II. RELATED WORK

Standard works in literature for computing PageRank
in parallel focused on exploiting the power of large
cluster based computation. In general, the main focus
of any parallel implementaion of the PageRank algo-
rithm was on reducing the communication overhead and
efficient problem partitioning. Zhu et al. [9] used an
iterative aggregation and disaggregation method to effec-
tively speedup the PageRank computation in a distributed

environment. Gleich et al. [10] modeled the compu-
tation of PageRank as a linear system and evaluated
the performance of a parallel implementation on a 70-
node Beowulf cluster. A parallel implementation of the
standard power method for computing PageRank was
done by Wu et al. [11] on AMD GPUs using OpenCL
programing model. This work essentially concentrates on
parallelizing the sparse matrix vector product (SpMV)
using the AMD GPUs. Another work in this regard by
Cevahir et al. [12] focused on extending a CPU cluster
based parallel implementation on to a GPU cluster, using
upto 100 GPU nodes.

Our work is an attempt on measuring performance
gains in computational costs for calculating PageRank
using power method and it’s extrapolation variant on a
single NVIDIA GPU using the standard CUBLAS and
CUSPARSE libraries. To the best of our knowledge, no
work has been done on parallelizing PageRank compu-
tation using a single GPU.

III. POWER METHOD FOR COMPUTING PAGERANK

Finding Eigenvector for a given matrix is a numerical
linear algebra problem that can be solved using several
available methods in the literature. But, Power method is
often the method of choice due to it’s ability to calculate
the dominant Eigen pair. This method is an apt choice
for the PageRank problem because, we are interested
only in the principal Eigenvector of the given matrix.
Procedurally, this method is an iterative method that finds
the vector ¯xk+1 from x̄k as ¯xk+1 = Ax̄k until ¯xk+1

converges to desired tolerance.
When Power method converges, the vector ¯xk+1 is

the Eigenvector for the given matrix corresponding to
the dominant Eigenvalue (which, in this case is 1).
The power method for computing PageRank can be
elucidated as follows. Here, δ is the 1-Norm difference

Data: Matrix A, Initial vector x̄0
Result: ¯xk+1, the Eigenvector of Matrix A
repeat

¯xk+1 = Ax̄k;
δ = || ¯xk+1 − x̄k||1;

until δ < ε;
Algorithm 1: Power method for computing PageRank

between the vectors in the kth iteration and the k + 1th

iteration and ε is the desired convergence threshold. Note
that A = αP̄T + (1 − α)E. Where, E is an stochastic
matrix introduced to model the complete behaviour of
a random surfer on the web. This reformulation is a

consequence of the fact that the sparse matrix P alone
do not capture the complete behavior of a random surfer.
This introduces a new parameter α, also known as
“Damping Factor”, whose value ranges between 0 and 1.
It is an empirically proven fact that the damping factor
α signifies the sub-dominant Eigenvalue of the Google
matrix [13]. Observe that P is a sparse matrix and the
sparsity is lost by taking the Convex Combination.

A. An Efficient Power method type Algorithm for the
PageRank problem

We are dealing with matrices that represent the hy-
perlink structure of the web that are very huge in size.
Considering A as such and applying the Power method
will lead to memory overflow. This can be overcome by
replacing the matrix vector product Ax̄ as illustrated in
the following Algorithm.

Data: Matrix P, Initial vector x̄0, Damping
factor α, Personalization Vector v̄

Result: ¯xk+1, the Eigenvector of Matrix P
repeat

¯xk+1 = αPTx̄k;
w = ||x̄k||1 − || ¯xk+1||1;

¯xk+1 = ¯xk+1 + wv̄;
δ = || ¯xk+1 − x̄k||1;

until δ < ε;
Algorithm 2: Modified Power method for computing
PageRank

Where v̄ is the Personalization vector which is 1
n ē (ē

is a column vector of all ones). The irreducibility of A
implies that the dominant Eigenvalue is 1.

B. Extrapolation Techniques for accelerating Conver-
gence of Power Method

Due to the sheer size of the web (over 50 billion
links) PageRank computation by power method can take
several days to complete. Speeding up this computation
is highly critical.

Though, power method is an apt choice for the PageR-
ank problem, the convergence of the method is a matter
of concern when α goes closer to 1. Hence, there is a
need to lookout for variants of the power method that
can accelerate the computation of the desired Principal
Eigenvector of the given Matrix.

1) Aitken Extrapolation Technique: The Aitken Ex-
trapolation technique [4] for computing PageRank is
an extension of the basic power method in which the
component values of the intermediary vectors in the

power iterations are periodically pruned so that the
resultant vectors obtained are refined in the direction of
the desired vector. The algorithm can be elucidated as
follows.

Data: Matix A, Initial vector x̄0
Result: ¯xk+1, the Eigenvector of Matrix A
repeat

¯xk+1 = Ax̄k;
δ = || ¯xk+1 − x̄k||1;
periodically xk = Aitken(x̄k−2,x̄k−1 , x̄k);

until δ < ε;
Algorithm 3: Aitken Power method for computing
PageRank

function x̄ = Aitken(x̄k−2,x̄k−1 , x̄k);
for i← 1 to n do

ḡi = (xk−1i - xk−2i)2;
h̄i = xki - 2xk−1i + xk−2i ;
xi = xki - gi/hi;

end
Algorithm 4: The Aitken Routine

2) Operation Count: In order for an extrapolation
method such as Aitken Extrapolation to be useful, the
overhead should be minimal i.e. the costs in addition
to the cost of applying power iteration to generate
iterates. The operation count of the loop in Algorithm
4 is O(n), where n is the number of pages on the
web. The operation count of one extrapolation step is
less than the operation count of a single iteration of
the Power Method, and since Aitken Extrapolation may
be applied only periodically, Aitken Extrapolation has
minimal overhead. In the implementation, the additional
cost of each application of Aitken Extrapolation is about
1% of the cost of a single iteration of the Power Method
which is negligible.

IV. SCOPE FOR PARALLELIZATION

The power method for computing PageRank is highly
parallelizable since most of the computation involves
Sparse Matrix-Vector product (SpMV) and vector-vector
operations. Since the matrix under consideration has
a sparse structure, we used the CUSPARSE library
provided by NVIDIA to store the matrix and perform
the corresponding operations. The sparse matrix is con-
structed by reading an adjacency list, which represents
the nonzero values in the matrix.

The list of operations involved in power method
for computing PageRank and their equivalent CUS-

PARSE/CUBLAS library calls used in our implemen-
tation can be summarized as follows.
• ȳ = αPTx̄ → cusparseDcsrmv(), to perform the

sparse matrix P T and dense vector x̄ product
• ||x̄||1 and ||ȳ||1 → cublasDasum(), to calculate the

1-Norm of the vectors (Here, both the vectors x̄ and
ȳ are dense)

• ȳ = ȳ+wv̄ → cublasDaxpy(), to update the vector
ȳ, a simple axpy operation

• δ = ||ȳ− x̄||1 → Wrote a simple kernel in the GPU
to calculate δ

A. Experimental Setup

For the experiment, our parallelized version of the
power method was run on Tesla T20 based “Fermi”
GPU. A serial implementation of the same was also run
in Matlab R2010a on Intel(R) core(TM)2 Duo 3.00GHz
processor and 3GB RAM.

B. Evaluation Dataset

The performance of the parallel implementation of
power method for computing PageRank and it’s corre-
sponding extrapolation variant is evaluated on publicly
available datasets [7] [8]. We also evaluated the per-
formance on stanford.edu dataset. It consists of 281903
pages and 2382912 links. This link structure is repre-
sented as an adjacency list, which is read as an input to
construct the sparse matrix P . Table I summarizes the
details of the datasets used in our experimentation.

Name Size
Computational Complexity (CC) 884 x 884

Abortion 2292 x 2292
Genetic 3468 x 3468

Stanford.edu 281903 x 281903

TABLE I
DATASET DESCRIPTION

Fig. 1. Execution time for α = 0.75 on stanford.edu dataset

α ε Reduction in It(Serial) Reduction in It(GPU)
0.75 1e-3 0 1
0.75 1e-8 3 3
0.75 1e-10 2 2
0.75 1e-12 1 2
0.80 1e-3 0 0
0.80 1e-8 1 4
0.80 1e-10 4 4
0.80 1e-12 3 3
0.99 1e-3 112 114
0.99 1e-8 116 129
0.99 1e-10 126 130

TABLE II
SAMPLE RESULTS FOR EXTRAPOLATION ON GENETIC DATASET

α ε Reduction in It(Serial) Reduction in It(GPU)
0.85 1e-3 3 4
0.85 1e-8 4 5
0.85 1e-10 4 5
0.85 1e-12 5 5
0.95 1e-3 4 7
0.95 1e-8 5 7
0.95 1e-10 6 7
0.95 1e-12 7 7

TABLE III
SAMPLE RESULTS FOR EXTRAPOLATION ON CC DATASET

V. RESULTS1

In this section, we quantify the performance of our
parallel implementation of the power method and it’s
extrapolation variant on datasets of varying sizes. The
performance of the same is evaluated for varying values
of α and tolerance factor ε. For our experimentation,
the α values ranged from 0.75 to 0.99 and the ε values
ranged from 1e − 3 to 1e − 15. The results of the
datasets titled computational complexity and Genetic
are tabulated in Tables II and III. Here, “It” refers
to the total number of iterations taken for the power
method to converge and “Ti” refers to the time taken
for convergence in seconds.

From our findings, we observed substantial perfor-
mance gains on all the datasets considered for exper-
imentation and it is more pronounced in the case of
stanford.edu dataset. As expected, the parallel implemen-
tation outperformed the serial implementation in terms
of time taken for convergence for all the datasets. We
also found a potential gain in terms of the number of
iterations for convergence as α became closer to 1 and

1Due to the page limit constraints, we could present only a sample
of our obtained results

Fig. 2. Execution time for α = 0.85 on stanford.edu dataset

Fig. 3. Execution time for α = 0.90 on stanford.edu dataset

for higher tolerance levels. For instance, for α = 0.99
and ε = 1e-15, the serial implementation, converged in
18,234 iterations, whereas, the parallel implementation
took merely 3013 iterations for convergence. Thus, we
obtained a performance improvement of 16.52%.

We obtained positive results even in the case of
Aitken Extrapolation in terms of the number of iterations
taken for convergence. We measured the improvement in
terms of reduction in the number of iterations taken for
convergence. We summarize our findings in Tables II and
III. Specifically, for the Genetic dataset, for α = 0.99, and
for varying ε values, on an average, we observed that, the
parallel implementation reduced the number of iterations
for convergence by a difference of 6.

VI. CONCLUSIONS AND FUTURE WORK

PageRank computation that forms the core component
of Google’s search technology has been successfully
parallelized using the CUDA programing model on a
single GPU. We performed an extensive evaluation of
our parallel implementation for different input parameter
values and on datasets of varying sizes. From our results,
it is clearly evident that our work is very relevant as it
not only to minimizes the time involved in computing
PageRank, but also reduces the number of iterations for
convergence.

Fig. 4. Execution time for α = 0.95 on stanford.edu dataset

Fig. 5. Execution time for α = 0.99 on stanford.edu dataset

We intend to extend this parallel implementation on
larger datasets like stanford-berkely.edu [14] that reflect
the size of the World Wide Web in greater magnitude.
All the datasets that are considered for experimentation
are large but sill fit within the limits of the GPU memory.
The single GPU approach for computing PageRank may
not be scalable for larger matrices as the on-board GPU
memory is a major constraint. Therefore, we look out
for alternatives to accommodate large scale matrices. We
also look out for higher performance gains through better
optimization techniques at various levels of the algo-
rithm. Though Aitken extrapolation gave positive results,
it suffers a performance loss because the pruning of the
component values of the iterates may not be optimal. In
this regard, we also intend to parallelize another variant
of power method obtained using quadratic extrapolation
technique, which prunes the values in an optimal way.

ACKNOWLEDGMENT

We would like to express our deepest sense of grati-
tude to our Founder Chancellor Bhagwan Sri Sathya Sai
Baba. Without His grace, this work would have been
impossible. We also acknowledge NVIDIA Pune division
for providing the GPU infrastructure and support.

Fig. 6. Number of iterations for convergence on stanford.edu dataset
(Power Method), ε = 1e-15

REFERENCES

[1] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad, “The pagerank citation ranking: Bringing order to the
web.,” Technical report, Stanford InfoLab, 1999.

[2] Kurt Bryan and Tanya Leise, “The $25,000,000,000 eigenvec-
tor: the linear algebra behind google,” SIAM Review, vol. 48,
pp. 569–581, 2006.

[3] Sergey Brin and Lawrence Page, “The anatomy of a large-scale
hypertextual web search engine,” Computer Networks and ISDN
Systems, vol. 30, no. 1-7, pp. 107 – 117, 1998, Proceedings of
the Seventh International World Wide Web Conference.

[4] Sepandar Kamvar, Taher Haveliwala, Christopher Manning, and
Gene Golub, “Extrapolation methods for accelerating pagerank
computations,” in In Proceedings of the Twelfth International
World Wide Web Conference. 2003, pp. 261–270, ACM Press.

[5] CUDA CUBLAS Library, PG-05326-040V01, NVIDIA Corpo-
ration, April 2011.

[6] CUDA CUSPARSE Library, PG-05329-040V01, NVIDIA Cor-
poration, January 2011.

[7] Sepandar D. Kamvar, “Test datasets for link analysis algo-
rithms, http://kamvar.org/assets/data/stanford-web.tar.gz,” Ac-
cessed Online.

[8] University of Toronto Department of Computer Science,
“Datasets for evaluatiing link analysis algorithms,
www.cs.toronto.edu/ tsap/experiments/datasets/index.html,”
Accessed Online.

[9] Yangbo Zhu, Shaozhi Ye, and Xing Li, “Distributed PageR-
ank computation based on iterative aggregation-disaggregation
methods,” in Proceedings of the 14th ACM international
conference on Information and knowledge management.

[10] David Gleich, “Fast parallel PageRank: A linear system
approach,” Tech. Rep., 2004.

[11] Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, and Ningyi
Xu, “Efficient PageRank and spmv computation on AMD gpus,”
Parallel Processing, International Conference on, vol. 0, pp.
81–89, 2010.

[12] Ata Turk B. Barla Cambazoglu Akira Nukada Ali Cevahir,
Cevdet Aykanat and Satoshi Matsuoka, “Efficient PageRank
on GPU clusters,” 18th Workshop for the evaluation of high-
performance computing architecture, 2009.

[13] Taher H. Haveliwala, Sepandar D. Kamvar, and Ar D. Kamvar,
“The second eigenvalue of the google matrix,” 2003.

[14] Sepandar Kamvar, Taher Haveliwala, and Gene Golub, “Adap-
tive methods for the computation of PageRank,” Linear Algebra
and its Applications, vol. 386, no. 0, pp. 51 – 65, 2004.

