
Dynamic Shortest Paths using JavaScript on GPUs
Anurag Ingole*
IIT Madras, India

anurag@cse.iitm.ac.in

Rupesh Nasre
IIT Madras, India

rupesh@cse.iitm.ac.in

Abstract—Information on the internet is growing rapidly
and its processing needs high-speed infrastructure, both in
hardware and software. JavaScript is now an integral in-
gredient of web applications which perform tasks ranging
from error checking in online forms to processing Google
maps. Due to their interactive nature, performance of
JavaScript applications is critical, especially while handling
huge volumes of evolving data. Therefore, parallelization
of JavaScript code has been pursued in the recent past. In
this work, we target GPU parallelization of dynamic graph
algorithms on GPUs. We present implementation and
achieve effective parallelization of dynamic single source
shortest path computation. We compare the incremental,
decremental and fully dynamic versions against their static
counterpart and show that upto about 10% of updates,
dynamic processing on GPUs is beneficial.

Index Terms—GPU, SSSP, JavaScript, WebCL, dy-
namic, Node.js

I. INTRODUCTION

JavaScript is a dynamic programming language. It
is most commonly used as part of web browsers,
whose implementations allow client-side scripts to in-
teract with the user, control the browser, communicate
asynchronously, and alter the document content that
is displayed [1]. It is also used in server-side net-
work programming with runtime environments such as
Node.js [2], game development and the creation of
desktop and mobile applications. With the rise of the
single-page web applications and JavaScript-heavy sites,
it is increasingly being used as a compile target for
source-to-source compilers from both dynamic as well as
static languages. JavaScript is predominantly sequential,
and web applications until recently have been unable to
utilize hardware parallelism. Considering the parallelism
support by current hardware; web experience can be
evolved to the next level if JavaScript is made to run
in parallel.

JavaScript is used in several web-products that operate
on an underlying graph, such as Google Maps and Face-
book. Google Maps processes a network of junctions and

cities to find the shortest paths from one point to another
via a given mode of travel. Facebook creates a social
network of friend connections, and allows retrieving
attributes of various graph vertices (such as the update
stream of a friend). In real-life, these graphs are dynamic
in nature, that is, new vertices and edges keep getting
added or removed from the underlying graph. We target
such dynamic graphs in our work. As a preliminary
study, we investigate the effect of computing dynamic
shortest paths in JavaScript in parallel on a GPU for
large real-world graphs. Thus, instead of recomputing
the shortest paths for the modified graph, the goal is to
perform only a small amount of parallel processing to
get the modified shortest paths.

In this work, we implement a work-efficient fully
dynamic, that is, incremental and decremental single
source shortest path (SSSP) algorithm in JavaScript. The
incremental algorithm follows the same methodology
as that of the static algorithm, while the decremental
processing involves extra care to be taken. This paper
presents the ideas implemented on SSSP and BFS, but
these ideas are general enough to be extended to other
graph analytics algorithms like graph coloring, finding
connected components, computing Page Rank etc.

II. RELATED WORK

A few implementations for parallelizing JavaScript on
multi-core systems and GPUs exist, such as WebCL,
ParallelJS and RiverTrail.

A. JavaScript Parallelization

Parallel.js [3] is a tiny library for multi-core processing
in JavaScript. It was created to take full advantage of the
ever-maturing web-workers API. It uses the support of
web workers provided by native browser to run script
in parallel. Web workers help in writing multi threaded
JavaScript code. Hence different bits of JavaScript code
may be running at a particular instance of time. The level
of parallelism achieved by this implementation is limited
since scheduling of JavaScript thread on multi core



processor is dependent on OS and there is a limitation
on the number of threads for multi core processors.

ParallelJS [4] is used for flexible mapping of
JavaScript onto heterogeneous systems that have both
CPUs and GPUs. The framework includes a front-
end compiler, construct library and a runtime system.
JavaScript programs written with high-level constructs
are compiled to GPU binary code and scheduled to
GPUs by the runtime. The program can be executed on
either the CPU using the native JavaScript compiler or
translated to PTX and executed on the GPU.

RiverTrail [5] is a JavaScript library and a Firefox
add-on that together provide support for data-parallel
programming in JavaScript, targeting multi-core CPUs
and GPUs via OpenCL. The central component of River-
Trail is the ParallelArray type which models ordered
collections of scalar values. ParallelArray objects support
primitives such as map, reduce, scan, and combine,
which are amenable to parallelism.

The WebCL [6] project exposes OpenCL into
JavaScript, allowing parallel computation on modern
GPUs, multi-core CPUs and many core accelerators. We-
bCL supports all the functionality provided by OpenCL.
As OpenCL targets a wide variety of parallel architec-
tures compared to Nvidia CUDA, we base our imple-
mentation on WebCL.

B. Parallel SSSP

There are many implementations of parallel static
graph algorithms on a variety of architectures, including
distributed-memory supercomputers [7], shared-memory
supercomputers [8], and multicore machines [9]. Harish
and Narayanan [10] describe CUDA implementations of
graph algorithms such as BFS and single-source shortest
paths computation.

There exists a relatively large body of work on
speeding up processing of evolving graphs [11], [12],
[13], [14], [15]. While Chronos [11] introduces a novel
memory layout for evolving graphs to improve cache
locality during serial or parallel graph processing, much
of the other work restricts type of queries or are designed
for a specific algorithm. For instance, Ren et al. [12] and
Kan et al. [13] consider queries that depend upon the
graph structure alone while Desikan and Srivastava [14]
exploit specific properties of the Page Rank algorithm.
None of these works amortize processing costs as we do.

III. DYNAMIC SSSP COMPUTATION

We work with directed weighted graphs with positive
edge weights. We first explain how dynamic graphs

Figure 1. Graph with dynamic CSR edge representation

are stored in memory, and then discuss incremental,
decremental and fully dynamic SSSP.

A. Dynamic Graphs and their Representation

Dynamic graphs undergo series of modifications like
insertion and deletion of edges and vertices, as well
as modifications to vertex and edge attributes. Since
insertion of a vertex may be simulated by adding an
edge to a disconnected vertex, we consider insertions and
deletion of edges alone. This way, we can simulate edge
weight modification as a combination of edge deletion
and edge insertion. Thus, we do not reduce the generality
of application.

The graphs are represented in compressed sparse
row (CSR) format where entries in the edge array are
pointed to by the vertices in the vertex array. Additional
weight array of the same size as the edge array is also
maintained to store weights of the corresponding edges.
The set of newly inserted edges is maintained in a new
CSR array. For each edge to be deleted from the graph,
its weight in the weight-array is increased to MAX . An
example graph, its CSR representation and the dynamic
CSR representation are shown in Figure 1.

The worklist based parallel SSSP algorithm for static
graphs discovers new minimum paths by propagating
shortest paths through the graph. A vertex is added to
the worklist if and only if its distance has reduced in
the current iteration. Continuing this processing until
the worklist becomes empty ensures shortest distance
computed for each vertex in the graph. The information
computed by the static version is used as the base
distances by the dynamic version.

B. Incremental SSSP

In the incremental processing updates distances on
new edge addition. A useful property of incremental
SSSP is that the information is always propagated in the
forward direction (away from the updated edge). Thus,



Figure 2. (a) Incremental update (b) Decremental update (c) Incre-
mental + decremental update

whenever a new edge u → v is added, the distance of the
vertex u never changes, the distance of v may change,
and the distance of any vertex that is unreachable from
v would not change. Node v is added to the worklist if
its current distance (computed from the previous static
computation) is larger than the sum of u’s distance and
the weight on new edge u → v. When v is processed,
its neighbors may get added to the worklist, and so on.
All the nodes in the worklist are processed in the next
iteration to propagate the newly found shortest paths. In
the OpenCL kernel for incremental SSSP all the worklist
vertices are processed in parallel. The kernel is launched
repeatedly until no new shortest path can be discovered,
i.e., until the worklist becomes empty.

Example. Consider the graph in Figure 2(a) where two
new edges are added: 0 → 1 and 4 → 3. The processing
starts with both 0 and 4 in the worklist. The newly added
edge 0 → 1 with weight 2 reduces the current distance
of vertex 1, and 1 is added to the worklist. The distance
is now propagated to all the children of 1 which causes
change in the distance of 2 (from 4 to 3). In the next
iteration, the distances of neighbors 3 and 4 are updated
(from 5 to 4 and from 7 to 6 respectively). At this
step, no more nodes get added to the worklist, and the
processing stops. The example also shows that depending
upon where in the graph the new edge is added, the
amount of processing may differ.

C. Decremental SSSP

Decremental processing for SSSP has a non-triviality
that deletion of the shortest-path edge requires finding
the next shortest path. Further, this needs to be done
potentially for all the vertices reachable from the deleted
edge. This processing becomes complicated because the
next shortest path may lie anywhere in the graph – it
need to be restricted to the reachable set of vertices.

From each edge u → v that needs to be deleted for
decremental processing, we raise its weight to MAXINT.
Also, if edge u → v was part of the previous shortest
path then vertex v is pushed to the worklist with a flag
specifying decremental node. If the edge was not part of
the former shortest path then its weight is set to MAXINT
but the vertex is not added to the worklist. Each vertex
in the worklist looks for its next smallest predecessor by
going through all the incoming edges to find out the new
shortest distance. Therefore, decremental SSSP requires
reverse edges to be maintained. The newly-found shortest
distance will never be smaller than the previous distance.
Once v’s distance is computed then v propagates the
information to all of its successors which are part of the
shortest path. All the children of v which were part of
the shortest paths are pushed into the worklist with flag
specifying decremental node. The distance is iteratively
propagated to all the levels.

Example. Consider the graph in Figure 2(b) where edge
2 → 3 is deleted. Since it is part of the original shortest
path, we push it to the worklist with the decremental flag.
Vertex 3 goes through all its incoming edges to find the
next shortest path. Distance of vertex 3 is changed to
10. Now node 3 goes through all its outgoing edges and
finds that node 1 had its shortest path via 3, so it pushes
node 1 to the worklist with flag as decremental node.
In the next iteration node 1’s distance is updated to 12
from earlier 7. Since none of the edges of node 1 was
part of the shortest path, no edge can be pushed to the
worklist, and the algorithm terminates.

D. Fully Dynamic SSSP

Fully dynamic processing involves both the incremen-
tal and the decremental modes simultaneously. At first,
for each edge u → v to be added to the graph the
parent u is pushed into the worklist. Also for each edge
p → q that needs to be deleted from the graph vertex
q is pushed to the worklist with flag as decremental
if p → q was part of the shortest path. Each vertex
q in the worklist with decremental flag goes through
its incoming edges to compute the new shortest path.
But since the incoming edges in fully dynamic setting
include incremental edges, there is a possibility of new
distance to be smaller than the previous one. If the
distance decreases then the vertex q is inserted in the
worklist without the decremental flag. If the distance
increases then according to the decremental approach, all
the successors of q which were part of the shortest paths
are pushed into the worklist with flag as decremental.



Example. Consider the graph in Figure 2(c) where edge
0 → 1 is newly inserted and two edges 2 → 1 and
2 → 3 are deleted. Since both the edges 2 → 1 and
2 → 3 were part of the original shortest paths, both
the vertices 1 and 3 are added to the worklist with
flag as decremental. Each of the worklist elements is
processed in parallel, hence both the vertices compute
their next nearest predecessor. Vertex 1 finds 0 as the
new predecessor because of newly added edge 0 → 1.
Also, the new distance of vertex 1 is smaller than
its previous, hence node 1 gets added to the worklist
without decremental flag. Vertex 3 chooses vertex 4 as
the new predecessor and because of the increase in its
distance, vertex 3 loops through its outgoing edges to
find any successor which is part of the shortest path.
Since no children are part of the shortest path from
vertex 3, it does not add any vertex to the worklist.
Since incremental edge 0 → 1 is already processed in
the decremental phase, no new distances are computed
by the incremental algorithm.

IV. EXPERIMENTAL EVALUATION

We first discuss our implementation infrastructure, and
then present results for incremental, decremental and
fully-dynamic SSSP.

A. Implementation

We use Node package of WebCL. Node [16] is an
open source environment which facilitates server-side
web programming. Node uses Google V8 JavaScript to
execute JavaScript applications. To improve the through-
put and scalability of web applications, Node provides
event driven architecture and non-blocking I/O. npm [17]
(node package manager) enables users to install packages
inside node and use them in the application. Using
Node.js, JavaScript applications can be executed and de-
bugged on the command line. node-webcl [18] is Node.js
package which has implementation of WebCL. node-
webcl provides fast server-side web processing for range
of applications like image processing, graph algorithms,
etc. node-webcl package can be installed using npm. We
use the Node package of WebCL on a Cent-OS running
Intel(R) Xeon(R) system with 32 cores, 100 GB RAM,
and K40 Nvidia GPU.

For performance evaluation we have tested incre-
mental, decremental and fully dynamic SSSP imple-
mentations against real-world graphs obtained from
SNAP [19]. Table I shows characteristics of each graph.
We vary the percentage of edges added or deleted from

Graph #Vertices #Edges
Flickr 395,980 8,545,307

Rmat20 1,048,576 8,259,994
Rmat5 100,000 1,000,000

P2P 10,876 39,994
Table I

INPUT GRAPHS

Figure 3. Incremental SSSP Performance

the graph and compare its running time against a static
implementation. The expectation is that for smaller per-
centage changes, the dynamic version would outperform
its static counterpart, while after a threshold, the static
SSSP would perform better.

B. Incremental-Only and Decremental-Only Results

Performance of incremental and decremental SSSP
is shown in Figures 3 and 4 respectively. We observe
that the processing time increases with the percentage
of edges added or deleted. Further, until a small per-
centage of dynamic updates, performing an incremental
or decremental processing is more efficient than running
SSSP all over again. This threshold differs across graphs
as it is highly dependent on both the graph structure as
well as the dynamic updates.

C. Fully-Dynamic Results

We combined the insertions and deletions of edges
(nearly 50% each) and studied the behavior of our
implementation for fully-dynamic SSSP. The results are
shown in Figure 5. Similar to the incremental case, the
fully dynamic version performs better for fewer updates
(upto 10%). Beyond the threshold, the static version
starts outperforming.



Figure 4. Decremental SSSP Performance

Figure 5. Fully dynamic SSSP Performance.

V. CONCLUSION

We presented our initial successful implementation
of graph algorithms in JavaScript on GPUs. While we
demonstrated it only for the shortest paths computation,
we believe our investigation holds for similar graph
analytic algorithms such as breadth-first search, Page
Rank propagation, vertex coloring, etc. Going forward,
we would like to check if other graph algorithms are
amenable to GPU parallelism using JavaScript.

REFERENCES

[1] “https://en.wikipedia.org/wiki/JavaScript.”
[2] L. M. Surhone, M. T. Tennoe, and S. F. Henssonow, Node.Js.

Mauritius: Betascript Publishing, 2010.
[3] “http://adambom.github.io/parallel.js/.”

[4] J. Wang, N. Rubin, and S. Yalamanchili, “Paralleljs:
An execution framework for javascript on heterogeneous
systems,” in Proceedings of Workshop on General Purpose
Processing Using GPUs, ser. GPGPU-7. New York, NY,
USA: ACM, 2014, pp. 72:72–72:80. [Online]. Available:
http://doi.acm.org/10.1145/2576779.2576788

[5] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram,
“River trail: A path to parallelism in javascript,” in
Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems
Languages &#38; Applications, ser. OOPSLA ’13. New
York, NY, USA: ACM, 2013, pp. 729–744. [Online].
Available: http://doi.acm.org/10.1145/2509136.2509516

[6] “https://www.khronos.org/webcl/.”
[7] A. Yoo, E. Chow, K. Henderson, W. McLendon,

B. Hendrickson, and U. Catalyurek, “A Scalable Distributed
Parallel Breadth-First Search Algorithm on BlueGene/L,”
in Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, ser. SC ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 25–. [Online]. Available:
http://dx.doi.org/10.1109/SC.2005.4

[8] D. A. Bader and K. Madduri, “Designing Multithreaded
Algorithms for Breadth-First Search and st-connectivity on
the Cray MTA-2,” in Proceedings of the 2006 International
Conference on Parallel Processing, ser. ICPP ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 523–530.
[Online]. Available: http://dx.doi.org/10.1109/ICPP.2006.34

[9] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew, “Optimistic parallelism
requires abstractions,” SIGPLAN Not. (PLDI), vol. 42,
no. 6, pp. 211–222, 2007. [Online]. Available:
http://iss.ices.utexas.edu/Publications/Papers/PLDI2007.pdf

[10] P. Harish and P. J. Narayanan, “Accelerating large graph algo-
rithms on the gpu using cuda,” in HiPC’07: Proceedings of the
14th international conference on High performance computing.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 197–208.

[11] W. Hant, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prab-
hakaran, W. Chen, and E. Chen, “Chronos: a graph engine for
temporal graph analysis,” in Proceedings of the Ninth European
Conference on Computer Systems. ACM, 2014, p. 1.

[12] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng, “On querying
historical evolving graph sequences,” Proceedings of the VLDB
Endowment, vol. 4, no. 11, pp. 726–737, 2011.

[13] A. Kan, J. Chan, J. Bailey, and C. Leckie, “A query based
approach for mining evolving graphs,” in Proceedings of
the Eighth Australasian Data Mining Conference-Volume 101.
Australian Computer Society, Inc., 2009, pp. 139–150.

[14] P. Desikan and J. Srivastava, “Mining temporally evolving
graphs,” in Proceedings of the the Sixth WEBKDD Workshop in
conjunction with the 10th ACM SIGKDD conference, vol. 22,
2004.

[15] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, “Graph-
scope: parameter-free mining of large time-evolving graphs,” in
Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2007, pp.
687–696.

[16] “https://nodejs.org/en/.”
[17] “https://www.npmjs.com/.”
[18] “https://github.com/mikeseven/node-webcl.”
[19] J. Leskovec and R. Sosič, “SNAP: A general purpose

network analysis and graph mining library in C++,”
http://snap.stanford.edu/snap, Jun. 2014.


