Georgia Institute for Data Tech Engineering and Science

GENOMES GALORE: BIG DATA CHALLENGES IN THE LIFE SCIENCES

SRINIVAS ALURU GEORGIA INSTITUTE OF TECHNOLOGY

CREATING THE NEXT®

The Big Data Challenge

Then (2005)

ABI 3700 96 ~800 bp reads 76.8 X 10³ bases ~\$1 per kilo base Now

Illumina Hiseq X 6 billion 2X150-bp paired reads 1800 X 10⁹ bases ~\$1 per 100 million bases

Overview of NGS Bioinformatics

DNA (e.g. Chromosomes)

TAGTGGATCCCCGGGCTGCAG... GGCCCATAGACAGACAGCAAA... TCTCTCTTTTTCTCACGCACA... TTTTCTTGACTTGTTGTCGAT...

> Base Calling & Error Correction

Fragmentation into small DNA segments

High-throughput Sequencing

Overview of NGS Bioinformatics

A Variety of Sequencers

Pacbio
 ~8,000 - 16,000 bp

Ion Torrent/Proton
 200 bp avg

 Oxford Nanopore MinION ~10,000 bp

Grand Challenges

- Viral disease transmission, outbreak detection
- Microbial soil metagenomics, human microbiome, engineer microbes for human needs, bioterrorism
- Encyclopedia of life sequence genomes of all organisms
- Agriculture engineer plant genomes for optimal yield
- Precision medicine find signatures of diseases, determine targeted cures

HPC Research in NGS Bioinformatics

DNA (e.g. Chromosomes)

TAGTGGATCCCCGGGCTGCAG... GGCCCATAGACAGACAGCAAA... TCTCTCTTTTTCTCACGCACA... TTTTCTTGACTTGTTGTCGAT...

Base Calling & Error Correction

[IPDPS 2012 HiPC 2015] Fragmentation into small DNA segments

High-throughput Sequencing

HPC Research in NGS Bioinformatics

Applications and Domain Specific Languages

Application Components

Error correction, Read mapping, Assembly, Transcript counts, etc.

Core Algorithms

All vs. one,All vs. all,Syntenic alignment,Repeat finding,etc.

Index Structures

Suffix trees/arrays, BWT, FM-indexes, De Brujin/overlap graphs, etc.

Programming Environments

C++,PThreads,OpenMP,OpenCL,CUDA,MPI,HADOOP

HPC Hardware

Multicores, GPUs, SMPs, Clusters, Clouds

k-mer Indexing

- k-mer: a length k substring of a DNA/RNA sequence
- k-mer indices are used to track the frequencies, positions, and quality scores of k-mers in the sequence data
- Commonly used by
 - Sequence alignment
 - Genome assembly
 - Error correction
 - Repeat detection
 - SNP detection
 - Comparative genomics

Assembly	<i>k</i> <= 31	SoapDenovo2, Abyss
Error Detection / Correction	<i>k</i> ~= 17, 25	SoapDenovo2, AllPaths-LG
Repeat detection, alignment seeds	<i>k</i> ~= 100	AllPaths-LG

– etc

Kmerind Library

- Distributed memory *k*-mer index library
- Fully customizable and extensible
 - Key: k-mer or a transformation of a k-mer (e.g. reverse complement)
 - Value (user specified): read id, position in read, count/frequency, next base in read (i.e. de Bruijn graph edge), quality score, etc.

• Optimized for performance

- For commonly used indices: k-mer counting and position indexing
- Provides standard index operations
 - *Insert, erase, find,* and *count* operations and their conditional counterparts
 - Building blocks for more complex operations on k-mer indices

Kmerind Algorithm

Kmerind: Performance

- Counting canonical DNA 31-mers in 7.5, 15, 30 GB metagenomics read sets, and human (3 GB) and pine (12 GB) whole genome, using 64 cores
- Both hashing and sorted array based Kmerind indices are faster than JellyFish 2, KMC 2, and Kmernator

	Metagenomic Reads			Whole Genome	
time (s)	M1	M2	M3	G1	G2
JellyFish 2	36.27	67.35	84.46	20.60	66.13
KMC 2	23.44	48.19	83.28	115.63	341.35
Kmernator	84.00	172.00	349.00	_	_
Kmerind HASH	9.97	20.04	42.52	13.04	50.98
Kmerind SORT	12.20	24.96	50.15	15.19	61.19

Out-performs Kmernator on distributed memory by 6-8X

Pan et al., ACM BCB 2016

Suffix Tree (ST)

- trie of all suffixes of a set of sequences
- Suffix Array (SA)
 - array of sorted suffixes
 - represented by their offset

Longest Common Prefix (LCP)

length of prefix match between consecutive suffixes in SA

SA+LCP equivalent to **ST**

- for many applications
- more space efficient but slower

Prior State-of-the-art

- Genomic data sets are large
 - Human Genome 3.2 GB
 - Pine Genome 12 GB
 - Metagenomics 100 1000 GB (raw reads)
- Previous methods are limited, even for Human Genome:
 - External memory: Takes hours
 - Shared memory parallel:
 - Can't scale to large inputs (run out of memory)
 - ➢ [Shun SC'14, Shun TOPC'14]: SA+LCP: 105s, ST: 168s
 - Distributed memory parallel:
 - Suffix Tree: > 7 minutes [Comin 2013]
 - Suffix Array:
 - Not scalable to large inputs
 - Require input sequences to be in-memory on all processes

• Prefix Doubling

Prefix Doubling

• Prefix Doubling

• Prefix Doubling

Sorted by prefix 2

9 8

s i i s s \$

s

s

р

p i \$

1 \$ i s pi

S

i s \$ i

p

i \$ 6 3

S

i li

р

\$

\$

5 2 S S

S S

|i||i

p s

p |\$ |p

p i \$

Prefix Doubling

Sorted by prefix 2

\$

Experimental Results for Suffix Arrays

Runtime (seconds) of different methods

Method	H 2G	H 3G	P 12G
divsufsort	424.5	586.4	X
mkESA (1)	586.6	1,123	X
mkESA (4)	462.6	759	X
cloudSACA (128)	40.6	X	X
Our method (128)	16.3	22.1	142.6
Our method (1600)	3.5	4.8	14.8

Experimental System:

- 100 nodes: 2x 8 core Intel E5-2650
- 128 GB RAM per node
- QDR Infiniband

Flick et al., *Supercomputing* 2015 Best Student Paper

Experimental Results for Suffix Trees

Method	System	Cores	Time	(a) Time for SA+LCP+ST
WaveFront	IBM BG/L	1024	15 min	G - □ Time ST □ Time SA+LCP
ERA	16x Intel 2-core nodes	32	13.7 min	
PCF	MareNostrum	172	7 min	s) so [s]
Shun	4x 10 core Intel E7-8870	40	168 s	Runi 20
Shun	4x 18 core Intel E7-8870	72	146 s	₽ -
Our method	4x 18 core Intel E7-8870	72	63 s	96 256 512 1024
Our method	64 nodes: 2x 8 core Intel E5-2650	1024	9.5 s	Number of Cores

Flick & Aluru, IPDPS 2017 (under review)

De Bruijn Graph Partitioning

- Soil metagenomics dataset
 - Iowa Corn (1.8 billion reads)
 - Iowa Prairie (3.3 billion reads)
- High species-level heterogeneity
 - Disconnected components in de Bruijn graph (Howe *et al*. 2014)

- 56 million components in Iowa Prairie dataset
- 31 million components in Iowa Corn dataset

 Distributed connected component labeling algorithm

Initialization

- Vector of tuples
- 2 tuples per edge in the graph
- Partition id of node = node id

Current partition id Neighbor partition id Node id

- Each iteration
 - Do a parallel sort of all the tuples by <u>current partition Id</u>
 - Within each "bucket", compute minimum *neighbor partition id*

Flip the tuples to communicate my new partition id to neighbors in the next iteration

- Each iteration
 - Do a parallel sort of all the tuples by <u>current partition Id</u>
 - Within each "bucket", compute minimum *neighbor partition id*

 $P_c' = \min(P_{n1}, P_{n2} \dots P_{ni})$

Flip the tuples to communicate my new partition id to neighbors in the next iteration

- Each iteration
 - Do a parallel sort of all the tuples by <u>current partition Id</u>
 - Within each "bucket", compute minimum *neighbor partition id*

 $P_{c}' = \min(P_{n1}, P_{n2}...P_{ni})$ $P_{c} \leftarrow P_{c}'$

Flip the tuples to communicate my new partition id to neighbors in the next iteration

- Each iteration
 - Do a parallel sort of all the tuples by <u>current partition Id</u>
 - Within each "bucket", compute minimum *neighbor partition id*

$$P_c' = \min(P_{n1}, P_{n2}...P_{ni})$$
$$P_c \leftarrow P_c'$$

 Flip the tuples to communicate my new partition id to neighbors in the next iteration

• Each iteration

- Do a parallel sort of all the tuples by *current partition Id*

- Within each "bucket", compute minimum *neighbor partition id*

$$P_{c}' = \min(P_{n1}, P_{n2}...P_{ni})$$
$$P_{c} \leftarrow P_{c}'$$

Flip the tuples to communicate my new partition id to neighbors in the next iteration

Shiloach and Vishkin "An O(log n) parallel connectivity algorithm" 1982

Strong scalability up to 4,096 cores

- Partitioned graph with 54 billion edges in 3 minutes (for Iowa corn metagenomics dataset) using 32K cores
- Performance compares favorably against previous best distributed-memory connected components algorithm (Slota et al. IPDPS 2016).

Flick, Jain, Pan, and Aluru, *Supercomputing* 2015 (Reproducibility Initiative Winner – SC16)

Layer 2 – Core Algorithms

• Support common algorithmic constructs

- Two types of sequences
 - Fragments (reads: 100-300bp, 5000bp+)
 - Genomic Sequences (genomes, chromosomes, large genomic segments: 10⁵ 10¹⁰ bp)
- Computations within or across the two types of sequences

Layer 2 – Core Algorithms

- all vs. all between fragments
 - Common *k*mer
 - Spaced kmer (used in mapping)
 - Sharing a good fraction of kmers (Jaccard's coeff.)
 - Local alignment (exons within genes, etc.)
 - Suffix-prefix alignment (assembly)
- all (fragments) vs. one (genomic), all vs. few
 return all mapping locations

Layer 2 – Core Algorithms

- Intra genomic
 - repeats, tandem repeats, CpG islands, retrotransposons, gene duplications
- genomic vs. genomic
 - SNPs, variation detection, large-scale genomic events
- Multiple genomic
 - Motif detection, gene content evolution, multigene synteny

Software Repository

<u>Parallel Bioinformatics Library for Short</u> <u>Sequences (ParBLiSS) – github.com/ParBLiSS</u>

Workshop on <u>Parallel Software Libraries for</u> Sequence <u>Analysis</u> (pSALSA)

- ACM BCB, September 2015, Atlanta
- IPDPS, May 2016, Chicago
- ACM BCB, October 2016, Seattle

Whole-Genome Networks

Arabidopsis Thaliana

- Widely studied model organism
- 125 Mbp genome sequenced in 2000
- About 22,500 genes & 35,000 proteins
- NSF Arabidopsis 2010 Program launched in 2001
 - Goal: discover function(s) of every gene
 - ~\$265 million funded over 10 years
 - Sister programs such as AFGN by German Research Foundation (DFG).
- Status today: a third of genes with no known function
- How can computer science help?
 - 11,760 gene expression datasets available in public databases.
 - Construct genome-wide networks to generate intelligent hypothesis.

Gene Networks

• Structure Learning Methods

- Pearson correlation
 - ➤ (D'Haeseleer et al. 1998)
- Gaussian Graphical Models
 - ➢ GeneNet (Schafer et al. 2005)
- Information Theory
 - > ARACNe (Basso et al. 2005)
 - > CLR (Faith *et al*. 2009)
- Bayesian networks
 - Banjo (Hartemink et al. 2002)
 - bnlearn (Scutari 2010)
- Poor prognosis (Marbach et al. PNAS 2010)
 - Many do poorly on an absolute basis. One in three no better than random guessing.
 - Compromise: Quality of method vs. data scale

Score-based Bayesian Network Structure Learning

Pa(X)

Х

- Scoring Function: *s(X, Pa(X))*
 - Fitness of choosing set Pa(X)
 as parents of X
 - Score of a network *N*

Score(N) = $\sum_{X_i} s(X_i, P_a(X_i))$

Parallel Heuristic Algorithm

- Conservatively estimate candidate parent sets CP(X) for each X
 - Symmetric: $Y \in CP(X) \implies X \in CP(Y)$
- 2. Compute optimal parents sets (OPs) from CPs using exact method
 - Directly compute *OP*s from small *CP*s (*CP*(*X*) $\leq t$)
 - Reduce large CPs by using $CP(Y) \leftarrow CP(Y) \setminus \{X \in CP(Y) \mid Y \in OP(X)\}$
 - Select top t correlations for still large CP sets
 - Directly compute OPs from the now small CPs
- 3. Detect and break cycles

Proposed Hypercube Representation

- Compute $CP(X) \rightarrow OP(X)$ $OP(X_i) = \underset{A \subseteq CP(X_i)}{argmax} s(Xi, A)$
- But, more efficient to compute s(Xi, A) from s(Xi, B) where $B \subset A$.
- Depth first traversal to cap memory usage

Work Decomposition

- Maximum unit of work is set as *r*-dimensional hypercube
- Larger hypercube are split into *r*-dimensional subhypercubes
- Direct access to subhypercube facilitated by directly computing the root.

Key idea: Significantly increases parallelism with negligible compromise on reuse.

Target Supercomputers

- Tianhe-2, National University of Defense Technology, Changsha.
- Stampede, Texas Advanced Computing Center, Austin

	Tianhe-2(54.9 PF)	Stampede(8.5 PF)
CPU	Intel Xeon E5-2600	Intel Xeon E5-2680
CPU Frequency	2.2 GHz	2.7 GHz
No. of CPUs	2	2
DRAM	64 GB	32 GB
Coprocessors	Intel Xeon Phi 31 S1P	Intel Xeon Phi SE10P
Coprocessors frequency	1.09 GHz	1.09 GHz
No. of Coprocessors	3	1
Coprocesssor Memory	8 GB	8 GB
Cores per node	192 (2 * 12 + 3*56)	76 * (2*8 + 60)
Threads per node	696	256

Where does speedup come from?

Baseline parallel algorithm – 1024 cores

Parallel Efficiency

Misra et al., *Supercomputing* 2014 Best paper finalist

Full Application Runs

	all, all	seeding, all	root, all	all, stress
Genes(n)	14,330	13,590	15,236	15,216
Experiments(m)	11,760	4,933	1,939	2,476
Genes with CP <= t	13,922	13,086	14,340	13,293
Genes with reduced CP	408	504	896	1,923
Genes with truncated CP	241	15	293	1,376
Run-time on STP (sec)	1,941	269	501	2,352
Run-time on TH-2 (sec)	113.4			171.2
Billion scores/s (TH-2)	12.3			42.9

GeNA – Gene Network Analyzer

Adopted from page rank (Haveliwala, IEEE Trans. Knowledge Data Engg. 2003)

Assign transition probabilities:

$$\omega(i,j) = \frac{(D[i,j])}{\sum_{k:(i,k)\in N} D[i,k]}$$

Compute ranks:

$$R(j)^{(k+1)} = (1 - \alpha) \cdot \left(\sum_{i:(i,j) \in N} \omega(i,j) \cdot R(i)^{(k)}\right) + \alpha \cdot p(j)$$

Return connected subnetwork with high ranked genes

Carotenoid Subnetwork and Pathway

Arabidopsis T-DNA Mutants

AT5G07020

AT1G56500

Wild-Type

Carotenoid Genes – Expression Levels

NSF BD HUBS PROGRAM

- Multi-stakeholder partnerships to go after regional/national/societal big data challenges
- 2. Set standards, share best practices
- 3. Provide data resources, develop infrastructure, create testbeds
- 4. Technology transfer, incubation
- 5. Education and workforce training
- 6. Engage with thought leaders, develop public awareness and ease adoption

as steering council members and/or task leads.

*South points indicate Senior Personnel

Georgia Institute for Data Tech Engineering and Science

Acknowledgements

Current and Former Students:

- Sriram Chockalingam
- Scott Emrich
- Patrick Flick
- Benjamin Jackson
- Chirag Jain
- Nagakishore Jammula
- Ananth Kalyanaraman
- Rahul Nihalani
- Olga Nikolova
- Tony Pan
- Indranil Roy
- Abhinav Sarje
- Xiao Yang
- Jaroslaw Zola

Collaborators:

- Maneesha Aluru, GT
- Karin Dorman, ISU
- Wu-Chun Feng, V. Tech
- Kune Olukotun, Stanford
- Aditaya Ramamoorthy, ISU
- Patrick Schnable, ISU
- Charles Sing, U. Michigan

QUESTIONS?

Georgia Institute for Data Tech Engineering and Science

