China's HPC development in the next 5 years

Depei Qian Beihang University/Sun Yat-sen University HiPC 2016, Hyderabad, India Dec 21, 2016

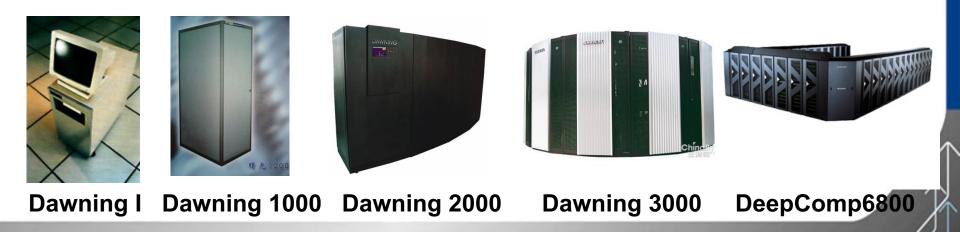
Outline

- A Brief review
- Current status
- Challenges and considerations
- Efforts in the 13th 5-year plan

A Brief review

- The most important high-tech R&D program of China since 1986
- Proposed by 4 senior scientists and approved by former leader Deng Xiaoping in March 1986
- Covers 8 areas, Information Technology is one of them
- Emphasis on strategic and frontier research on major technologies supporting country's development
- Also emphasize technology transfer and promotion to industry

- 1987: Intelligent computers
 - Influenced by the 5th generation computer program in Japan
- 1990: from intelligent computer to parallel computers
 - Emphasizing practical HPC capability for research and industry
 - Developing SMP & MPP
- 1998: from single HPC system to HPC environment
 - Emphasizing resource sharing and ease of access
 - Promoting the usage of the HPC systems
- 2006: from high performance to high productivity
 - Emphasizing other metrics such as programmability, program portability, and reliability besides peak performance
- Current:
 - Emphasizing integrated and balanced development of systems, environment, and applications
 - Exploring new mechanisms and business models for HPC services
 - Establishing eco-system for HPC applications



Three key projects on HPC

- 2002-2005 : High Performance Computer and Core Software
 - Resource sharing and collaborative work
 - Grid-enabled applications in multiple areas
 - TFlops computers and China National Grid (CNGrid) testbed
- 2006-2010 : High Productivity Computer and Grid Service Environment
 - High productivity
 - Application performance
 - Efficiency in program development
 - Portability of programs
 - Robust of the system
 - Service features of the HPC environment
 - Peta-scale computers
- 2010-2016 : High Productivity Computer and Application Service Environment
 - 100PF computers
 - Large scale HPC applications
 - Upgrading CNGird

- 1993 : Dawning-I, shared memory SMP, 640 MIPS peak
- 1995 : Dawning 1000: MPP, 2.5GFlops
- 1996 : Dawning 1000A : cluster
- 1999 : Dawning 2000 : 111GFlops
- 2000 : Dawning 3000 : 400GFlops
- 2003 : Lenovo DeepComp 6800, 5.32TFlops peak, cluster

HPC systems developed (1993-2011)

- 2004 : Dawning 4000A, Peak performance 11.2TFlops, cluster (No 10 in TOP500)
- 2008 : Lenovo DeepComp 7000,150TFlops peak, Hybrid cluster
- 2008 : Dawning 5000A, 230TFlops, cluster (2008)
- 2010 : TH-1A, 4.7PFlops peak, 2.56PFlops LinPack, CPU+GPU (No 1 in TOP500)
- 2010 : Dawning 6000, 3Pflops peak, 1.27 PFlops LinPack, CPU+GPU
- 2011 : Sunway Bluelight, 1.07PFlops peak, 796TF LinPack, implemented with China's multicore processors

Dawning 6000

Sunway-Bluelight

Current status

- High Productivity Computer and Application Service Environment (2011-2016)
 - Developing world-class computer systems
 - Tianhe-2
 - Sunway TaihuLight
 - Upgrading CNGrid and exploring new operation model and mechanism
 - Developing large scale parallel application software

First phase of TH-2

- Delivered in May 2013
- Hybrid system
 - 32000 Xeon, 48000 Xeon Phi, 4096 FT CPU
- 54.9PF peak, 33.86PF Linpack
- Interconnect
 - proprietary TH Express-2
- 1.4PB memory, 12PB disk
- Power: 17.8MW
- Installed at the National Supercomputing Center in Guangzhou

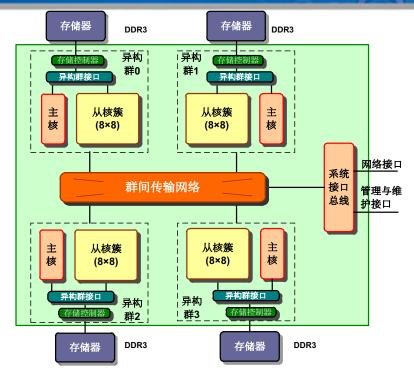
- The implementation scheme of the second phase of TH-2 evaluated and approved in July of 2014
 - Upgrading interconnect (completed)
 - Increasing the number of computing nodes (completed)
 - Upgrading computing nodes (delayed)
 - Upgrade the accelerator, replacing Knight Conner by Knight Landing

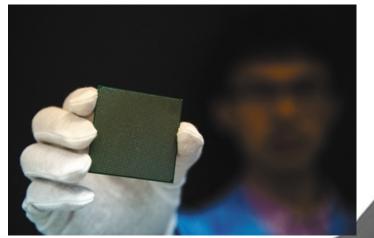
- The scheme has to be changed because of the embargo regulation of the US government
- The upgrading of TH-2 has to rely on indigenous FT processors/accelerators
- Completion of the second phase of TH-2 is delayed until the next year
- The development of the new FT processors/accelerators is still an on-going effort

Sunway Taihulight

- The second 100PF system, Sunway TaihuLight, was delivered in April 2016 and installed at the National Supercomputing Center in Wuxi.
- Implemented with indigenous SW 26010 260-core processors

Entire System	
Peak Performance	125 PFlops
Linpack Performance	93 PFlops
Total Memory	1310. 72 TB
Total Memory Bandwidth	5591.45 TB/s
# nodes	40, 960
# cores	10, 649, 600

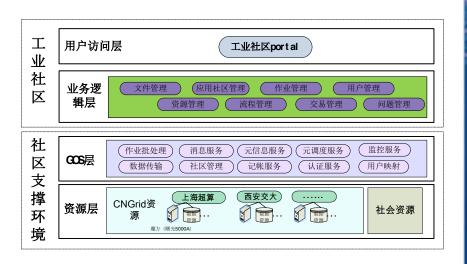

Sunway Taihulight (cont'd)

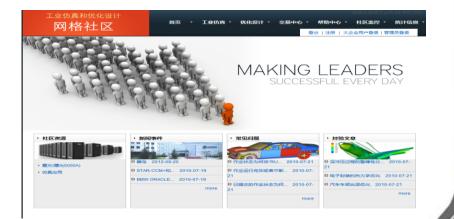

- Technology innovation achieved
 - High performance many-core processor
 - Low-power design
 - Very compact system
 - 40+ cabinets for 125PF
 - 1024 processors/cabinet
 - Efficient cooling: indirect water cooling to the chips
 - Efficient power supplies
 - Fault tolerant mechanism
 - detection and automatic replacement of the failed nodes
 - Many-core compiler support

SW 26010 Processor

- Core frequency ≈1.5 GHz
- DP Float peak performance ≈ 3.0
 TFlops
- Energy efficiency ≈ 10 GFlops/w
- Heterogeneous many-core architecture
 - 260 cores (4 main cores and 256 computing cores with local memory)
 - on-chip integrated memory controllers and network interface

- CNGrid service environment established with service features
 - enabled by software CNGrid Suite
 - 14 nodes currently, will be 16 next year
 - 8PF aggregated computing power, will be upgraded by integration of two 100PF systems
 - >15PB storage
 - >400 software and tools as services
 - supported >3000 projects


CNGrid sites


863			100
THU NSCTJ SCCAS kit Kit Kit Kit Kit Kit Kit Kit Kit Kit K		CPU/GPU	Storage
	SCCAS	157TF/300TF	1. 4PB
	SSC	200TF	600TB
	NSC-TJ	1PF/3. 7PF	2PB
	NSC-SZ	716TF/1.3PF	9. 2PB
	NSC-JN	1. 1PF	2PB
	THU	104TF/64TF	1PB
	IAPCM	40TF	80TB
	USTC	10TF	50TB
XJTU	XJTU	5TF	50TB
USTC	SIAT	30TF/200TF	1PB
HUST	HKU	23TF/7.7TF	130TB
香港 香港	SDU	10TF	50TB
SIAT HKU	HUST	3TF	22TB
	GPCC	13TF/28TF	40тв 🕅

Application villages over CNGrid

- Establishing domain-oriented application villages on top of CNGrid, providing services to the end users
- Set up business models and mechanisms between CNGrid and app villages
- Developing enabling technologies and platform supporting CNGrid transformation
- App villages currently being developed
 - Industrial product design optimization
 - New drug discovery
 - Digital media

- Application software development supported
 - Fusion simulation
 - CFD for aircraft design
 - Drug discovery
 - Rendering for Digital media
 - Structural mechanics for large machinery
 - Simulation of electro-magnetic environment
- Level of Parallelism
 - Effective use of more 300,000 cores with >30% efficiency required
 - Several reach more than million-core parallelism
- Must be used in the productive system for domain applications

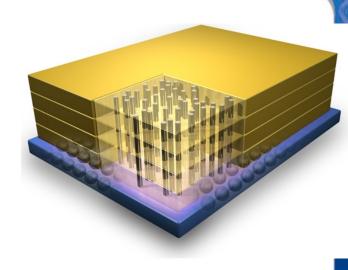
- China is still weak in kernel HPC technologies
 - processor/accelerator
 - novel devices (new memory, storage, and network)
 - large scale parallel algorithms and programs implementation
- Weak in application software
 - Applications rely on imported commercial software
 - expensive
 - small scale parallelism
 - limited by export regulation
- Shortage in cross-disciplinary talents
 - No enough talents with both domain and IT knowledge
- Lack of multi-disciplinary collaboration

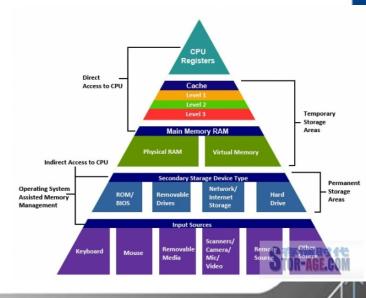
Challenges and considerations

Major Challenges to exa-scale systems

- Power consumption
 - Biggest obstacle
- Performance obtained by applications
- Programmability
 - Dealing with massive parallelism and Heterogeneity
- Resilience
- How to make tradeoffs between performance, power consumption, and programmability?
 - Could we sacrifice programmability for higher energy efficiency?
- How to achieve continuous no-stop operation?
- How to adapt to a wide range of applications with reasonable efficiency?

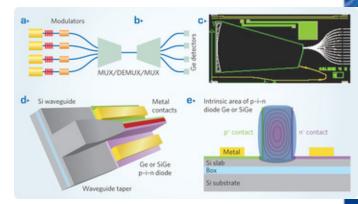
- Novel architecture beyond the current heterogeneous accelerated/manycore-based expected
- Co-processor or partitioned heterogeneous architecture?
 - Low utilization of the co-processor in some applications, using CPU only
 - Bottleneck in moving data between CPU and coprocessor
- Application-aware architecture
 - On-chip integration of special and general purpose units (idea from Prof. Andrew Chien), using the most efficient specific units when needed
 - Dynamic reconfigurable, how to program?
- Reducing data access and movement
 - Algorithm redesign
 - Energy-aware programming

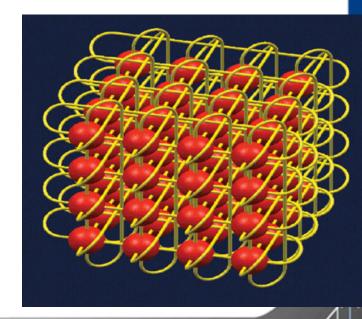




Memory system

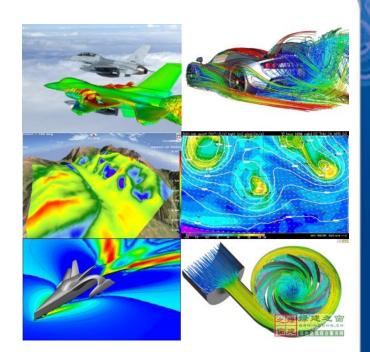
- Achieving large capacity, low latency, high bandwidth
- Increase capacity and lower power consumption by using DRAM/NVM together
 - Data placement issue
 - Handle the high write cost and limited lifetime of NVM due to write
- Bring the data closer to the processing
 - HBM near processor
 - On-chip DRAM
 - Simple functions in memory
- Using 3D stack technology
 - improving bandwidth and latency
 - match the physical and logical layout and reduce the distance of data moving
- Unified memory space in heterogeneous architecture

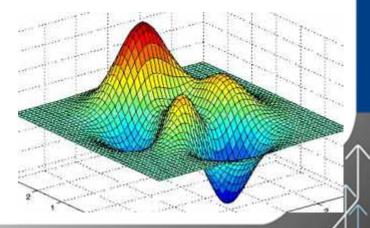




Interconnect

- Pursuing low latency, high bandwidth and low energy consumption
- New technologies
 - Silicon photonics communication
 - Optical interconnect/communication
 - 3D packaging
 - Miniature optical devices
- High scalability adapt to exa-scale
 - Interconnect for 10,000+ nodes
 - Low hop, low latency topology
 - Reliable and intelligent routing


Programming the heterogeneous systems


- Parallel programming for heterogeneous systems
 - for efficient expression of parallelism, dependence, data sharing, execution semantics
 - facilitating problem decomposition on heterogeneous systems
- A holistic approach proposed to deal with the difficulties in programming and uncertainty in performance
 - Programming models
 - Programming languages and compiler
 - debugging
 - Runtime optimization
 - Architectural support

Modeling methods and algorithms

- Full chain innovation
 - Mathematical methods
 - Algorithms
 - Algorithm implementation and optimization
- Good mathematical method is often more fundamental than hardware improvement and algorithm optimization
- Architecture-aware algorithm implementation and optimization is necessary
- Domain-specific libraries for improving software performance, productivity, and reducing the programming barrier

Resilience

- Resilience is one of the key issues of the exa-scale system
 - Large scale of system
 - 50K to 100K nodes
 - Huge amount of components
 - Very short MTBF
 - Long time non-stop operation required for solving large scale problems
- Reliability measures at different levels, including device, node, and system level
- Software/hardware coordination
 - Checkpointing requires fast context saving and recovery to avoid domino roll-back
 - Fault-tolerance at the algorithm and application software level

- Development and optimization of large scale parallel software require support of tools
- Particularly important for systems implemented with self-developed processors
- Three default tools required
 - Parallel debugger for correctness
 - Performance tuner for performance
 - Energy optimizer for energy efficiency

- Eco-system for exa-scale system based on indigenous processors is in a urgent need
 - System software
 - Tool software
 - Application development support
 - Application software
- How to attract the third party software developers
 Need product lines instead of a single machine
- Collaboration between academia and industry required
- Multi-disciplinary collaboration required

Efforts in the 13th 5-year plan

- The national research and development system is being reformed
 - Merge 100+ different national R&D programs/initiatives into 5 tracks of national programs
 - Basic research program (NSFC)
 - Mega-science and technology programs
 - Key R&D program (former 863, 973, enabling programs)
 - Enterprise innovation program
 - Facility/talent program

- High performance computing has been identified as a priority subject under the key R&D program
- Strategic studies and planning have been conducted since 2014
- A proposal on HPC in the 13th five-year plan was submitted in early 2015 and approved by the end of 2015 by a multi-government agent committee lead by the MOST
- The key project on high performance computing was launched in Feb. of 2016

- The key value of exa-scale computers identified
 - Addressing the grand challenge problems
 - Energy shortage, pollution, climate change...
 - Enabling industry transformation
 - Using simulation and optimization to support important systems and products
 - high speed train, commercial aircraft, automobile design...
 - support economy transformation
 - For social development and people's benefit
 - new drug discovery, precision medicine, digital media...
 - Enabling scientific discovery
 - high energy physics, computational chemistry, new material, astrophysics...
- Promote computer industry by technology transfer
- Developing HPC systems by self-controllable technologies
 - a lesson learnt from the recent embargo regulation

- Goals
 - Strengthening R&D of kernel technologies and pursuing the leading position in high performance computer development
 - Promoting HPC applications
 - Building up an HPC infrastructure with service features and exploring the path to the HPC service industry
- Major tasks
 - Next generation supercomputer development
 - HPC applications development
 - CNGrid upgrading and transformation
- Each task will cover basic research, key technology development, and application demonstration

- Activities
 - R&D on novel architectures and key technologies of the next generation supercomputers
 - Development of an exa-scale computer based on domestic processors
 - Technology transfer to promote development of high-end servers

Basic research

- Novel high performance interconnect

- Research on theories and implementation technologies of the novel interconnect
 - based on the enabling technologies of 3D chips, silicon photonics and on-chip networks
- Programming&execution models for exa-scale systems
 - developing new programming models for heterogeneous systems
 - enhancing efficiency in programming
 - exploitation of advantages of the heterogeneous architectures

- Prototype systems for verification of the exa-scale technologies
 - candidate architectures for exa-scale computer
 - major implementation technologies
 - technologies for improving energy efficiency
 - prototype system
 - 512 nodes
 - 5-10TFlops/node
 - 10-20Gflops/W
 - point to point bandwidth>200Gbps
 - MPI latency<1.5us
 - Emphasis on self-controllable technologies
 - system software for prototypes
 - 3 typical applications to verify the design

- Architecture optimized for multi-objectives
 - exa-scale architecture under the constraints of performance, energy consumption, programmability, reliability, and cost
- energy efficient computing node
 - 50-100TFlops/node
 - 30⁺GFlops/w
- high performance processor/accelerator design
 - 20TFlops/chip
 - 40⁺GFlops/W
 - Support multiple programming models

- Key technology
 - exa-scale system software
 - node OS
 - runtime
 - program development environment
 - system management
 - parallel debugger and performance analysis tool
 - highly scalable interconnect
 - high bandwidth, low latency
 - support interconnection of tens-of-million cores
 - scalable parallel I/O
 - multi-layer storage architecture
 - fault-tolerant techniques

- exa-scale infrastructure
 - high density assembling
 - high efficient power supply
 - high efficient cooling
- energy efficiency
 - cross-layer strategy
 - hardware and software coordination
- exa-scale system reliability

Exa-scale computer system development

- exaflops in peak
- Linpack efficiency >60%
- 10PB memory
- EB storage
- 30GF/w energy efficiency
- interconnect >500Gbps
- large scale system management and resource scheduling
- easy-to-use parallel programming environment
- system monitoring and fault tolerance
- support large scale applications

- Technology transfer
 - High-end domain-oriented servers based on exa-scale system technologies
 - high performance computing node
 - high speed interconnect
 - scalable I/O
 - energy efficient
 - high reliability
 - application software

- Activities
 - Basic research on exa-scale modeling and parallel algorithms
 - Developing high performance application software
 - Establishing the HPC application eco-system

- Basic research
 - computable modeling and novel computational methods for exa-scale systems
 - scalable high-efficient parallel algorithms and parallel libraries for exa-scale systems

- Key technology
 - programming framework for exa-scale software development, including framework for
 - structured mesh
 - unstructured mesh
 - mesh-free combinatory geometry
 - finite element
 - graph computing
 - supporting development of at least 40 million-core software

• Key technology and demo applications

- Numerical devices and their applications
 - numerical nuclear reactor
 - four components: Including reactor core particle transport, thermal hydraulics, structural mechanics and material optimization,
 - non-linear coupling of multi-physics processes
 - numerical aircraft
 - multi-disciplinary optimization covering aerodynamics, structural strength and fluid solid interaction
 - numerical earth
 - earth system modeling for studying climate change
 - non-linear coupling of multi-physical and chemical processes covering atmosphere, ocean, land, and sea ice
 - numerical engine
 - high fidelity simulation system for numerical prototyping of commercial aircraft engine
 - enabling fast and accurate virtual airworthiness experiments

- Key technology and demo applications
 - high performance application software for domain applications
 - electromagnetic environment simulation
 - energy-efficient design of large fluid machinery
 - drug discovery
 - ship design
 - complex engineering project and critical equipment
 - energy exploration
 - numerical simulation of ocean
 - digital media rendering
 - large scale hydrological simulation
 - high performance application software for scientific research
 - material science
 - high energy physics
 - astrophysics
 - life science

- Eco-system for HPC application software development
 - establishing a national-level R&D center for HPC application software
 - build up of a platform for HPC software development and optimization
 - tools for performance/energy efficiency and pre-/post-processing
 - build up software resource repository
 - developing typical domain application software
 - a joint effort involving national supercomputing centers, universities, and institutes

- Activities
 - Developing aystem-level software and operation platform for the national high performance computing environment
 - Upgrading CNGrid with leading computing resources and service capability
 - Developing service systems based on the national HPC environment

- service mechanism and technical platform for the national HPC environment
 - new mechanisms and enabling technologies required by service-mode operation
 - upgrading the national HPC environment (CNGrid)
 - >500PF computing resources
 - >500PB storage
 - >500 application software and tools
 - >5000 users (team users)

Demo applications

- service systems based on the national HPC environment
 - integrated business platform, e.g.
 - complex product design
 - HPC-enabled EDA platform
 - application villages
 - innovation and optimization of industrial products
 - drug discovery
 - SME computing and simulation platform
 - platform for HPC education
 - provide computing resources and services to undergraduate and graduate students

- The first call for proposal was issued in Feb. , 2016. 19 projects have passed the evaluation and been launched
- The second call (for 2017) was issued in Oct., 2016, the pre-proposal submission ended last month and the evaluation process is on going
- These two rounds of call cover most of the subjects of the key project except the exa-scale system development.
- The exa-scale system development will be started after completion of the three prototypes

Thank you!