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ABSTRACT 
The dramatic improvements in global interconnectivity due to 
intranets and the Internet have led to an explosion in the number 
and variety of data-intensive applications. More importantly, the 
large volumes of data available for general access and the 
rapidity with which these data change make it very difficult for 
users to track the data that they are interested in. Also, 
scalability is a central requirement in dissemination systems due 
to the huge number of users and large amount of information. 
This is demonstrated by frequent delays and service disruptions 
when accessing shared networked data sources. To overcome 
scalability issues, considerable research has been going on to 
minimize redundant server operations and maximize and 
prioritize bandwidth utilization while aiming for a reasonable 
(may not be the best) response time. In this paper, we introduce 
the idea of BUDDIES, a new protocol for data dissemination 
that can also be extended to automatic data dissemination and 
differentiated services.  
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1. INTRODUCTION 
Various data applications like servers that provide online 
monitoring of election results and results of cricket matches 
suffer from scalability problems. This issue of scalability 
manifests itself mainly due to the ever increasing size of the 
user base, which results in several serious problems like server 
overloading and clogging of the network leading to 
unacceptably high response times and sometimes, never ending 
waits (maybe because of server crashes). Therefore, to 
overcome these issues concerning scalability, massive work on 
efficient data dissemination has been going on. Several server 
side-scheduling algorithms [1, 2, 8, and 9] have been developed 
that aim at reducing redundant server side operations by 
calculating the results to a query once and disseminating the 
results either by broadcast or multicast. 
The ability of a web service to provide reasonably low response 
times to access its contents is constrained by available network 
bandwidth. It is important for the service to manage available 
bandwidth wisely. In the past, web sites have used ad-hoc 
solutions to deal with peak loads or in general to come up with a 
strategy to tackle user requests. Differentiated service can allow 
the system to provide better service for certain customers while 
gracefully degrading the service for other less important 
customers. While providing differentiated quality of service is 
typically enforced through network mechanisms, some systems 

have been introduced that provide a robust mechanism for 
managing network resources at the application level. One such 
system [3] uses a method called Quality Aware Transcoding that 
allows web servers to customize the size of objects constituting 
a web page, and hence the bandwidth consumed by that page, 
by dynamically varying the size of multimedia objects on a per-
client basis.  
Another pressing issue is that of automatic data dissemination. 
The tools and systems for information dissemination are 
becoming crucial in a variety of application environments in 
both the Internet and intranets [4]. In general, users subscribe to 
such systems by providing lists of topics they are interested in. 
Whenever new data is available for distribution, the system 
disseminates it to the users who may be interested in such data 
based on the user preferences. Several such systems have been 
developed [4, 5 and 6]. However, the method of user 
subscription provides very static user profiles. In the case where 
in the users’ interests change dynamically, this method will need 
a more efficient and user-friendly alternative so as to facilitate 
the users in specifying their preferences. Also, as the user base 
increases, scalability issues also come in to the picture 
 
The remainder of the document is organized as follows. Section 
2 introduces the core idea of BUDDIES, explains the 
terminology used in the subsequent sections and presents the 
architecture of BUDDIES. Section 3 describes the simulation 
model developed, presents the issues of concern and the 
simulation results. Section 4 concludes the document with a 
note on the future work. 
 

2. BUDDIES 
In the system developed by Wolf et al [7], the users in the 
network are grouped based on some heuristic (like physical 
proximity) and each group is assigned a router. BUDDIES 
combines the idea of grouping users along with the idea of data 
multicast. However, instead of grouping users purely on the 
basis of physical proximity, BUDDIES groups them on the basis 
of similar interests as well as proximity.  For example, consider 
two kinds of data – election results and cricket scores. All sites 
that are interested in the election results and are also sufficiently 
close to one another fall in one group. Sites those are interested 
in cricket scores are grouped similarly.  The main point behind 
grouping sites like this is to try to avoid redundant server 
operations (section 2.1) as far as possible. Therefore, if one can 
group users with similar interests and string those along one or 
more virtual network routes, then sending just one packet of 
data along this route may suffice, with a little compromise on 
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the response time. This will not only save a number of 
redundant server operations but will also save on the network 
bandwidth. 

2.1 Terminology 
Redundant Server Operations - The operations executed by a 
server are said to be redundant when it has to execute the same 
query again and again but for different users, even when these 
query requests are not much separated in time. Several factors 
determine the minimum distance between two query requests 
such as desired response time. The role of response time is 
explained more in section 2.2. 
Bus - A data structure that is a wrapper around a set of queries 
and a set of query results. The bus hops from one site to another 
along a pre-specified route. 
Route - A virtual path, connecting sites having common 
interests or that exchange some data that is of common interest 
and are also reasonably close to each other with respect to the 
network topology. The routes may be cyclic or acyclic. 

Hub - The sites those are capable of query processing. If a hub 
does not have the data required to process a query, it will 
forward the query to another hub that can either process this 
query or that will forward it. Hubs can accept queries from 
users. 

Host    - The sites that cannot process any queries. These are 
only client machines that accept queries from the user and 
forward those to the designated hub (explained later) and send 
the query results back to the user. 
Terminal – The sites that form the beginning and end points for 
a bus along a route. In the case of an acyclic route, there will be 
two terminals, which are the first and the last sites along the 
route that constitute the beginning and the end points of the 
route. For a cyclic route, both the terminal points are the same. 
Query - A client request for data. The type of query depends on 
the particular domain. It may be a simple set of keywords or it 
can also be an SQL query. Each query typically accesses some 
data objects that may be present either at a single hub or may be 
distributed at different hubs. A data object may be a relational 
table or a flat file (or any other form of data chunk), depending 
on the domain. 

Database – The entire collection of data objects distributed 
among the hubs. 

Query frequency - The frequency with which a host/hub gets 
query requests from users. This is measured in terms of the 
inter-arrival time between successive query requests.  
Bus frequency - The frequency at which a bus is generated at 
the beginning terminal point along a route. This is measured in 
terms of the time between successive bus generation events.  
The higher the inter arrival time; the lower is the bus/query 
frequency. In the rest of the document, the terms bus/query 
frequency and bus/query inter-arrival times are used 
interchangeably while bearing in mind the interpretation of each 
term as specified earlier. 

Commonality – The set of data items common to two or more 
queries is called the commonality between these queries. It is 
expressed as a percentage. For example, if the commonality 
between two or more queries is 10%, it implies that the 

intersection of common data objects accessed by these queries is 
10% of the total number of data objects accessed by each query. 

Response Time - The total time span between the arrival of the 
user request and the time when the entire result of the query 
reaches the respective host/hub. 

Wait time - The total time span between the arrival of a user 
request and the time when it is loaded on to a bus. 

Knee bus frequency – For a given query frequency, as the bus 
frequency decreases the average response time increases 
gradually till a particular value and then increases drastically. 
This particular value of the bus frequency is called as the knee 
bus frequency for the given query frequency. 

Accumulation effect – When more number of queries get 
accumulated, there is a high probability that the result of one 
might satisfy several others. This, leads to a low average 
response time. This effect is called ‘accumulation effect’. 

2.2 Architecture of BUDDIES 

Web sites in this system are organized in a two level hierarchy. 
The topmost level consists of sites acting as hubs, while the 
second level consists of sites, referred to as hosts which are in 
the regional area of one or more hubs. Hubs are connected with 
each other through prefixed routes, referred to as bus routes, 
based on their common interests and their proximity to each 
other. Hubs with similar interests and placed very far from each 
other are connected through different routes. The hosts in a 
regional area are connected to a particular hub, via routes. The 
hosts forward their queries to this hub. Figure.1 shows the web 
system architecture in BUDDIES. 
 
2.2.1 Data Dissemination 
The results to the user queries are disseminated as follows: 
• A query arriving at a host is forwarded to its designated 

hub. 
• Query and hub metadata relate the query content with 

certain hubs that can either directly satisfy the query or are 
known to contain links to hubs that can.  

• Buses operating along the various routes take the queries 
and deposit them at hubs that are either capable of 
processing the queries or forwarding those to other hubs. 
(Depending on the query and hub metadata stored in it, a 
hub may decide what alternative routes should be 
followed). 

• Buses transfer intermediate results found to the hub/host 
that issued the query. 

 
For example, consider Figure 1, the broken lines represent the 
routes along which we have hosts/hubs that are interested in 
election results, whereas the firm lines represent the routes that 
connect hosts/hubs that are interested in cricket scores.   Cluster 
B represents a group of hosts that are interested in cricket 
scores. There may be one or more routes connecting these hosts 
together. The requests generated by these hosts are forwarded to 
the hub f. From this hub, the requests are forwarded to hub e 
along route 9. Hub e forwards the requests to hub c along route 
10, which in turn forwards it to the server 'g' (which is also a 
hub). The requests are processed at the server and the results 
may be returned along the same route or through a different 
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route (that serves similar interests). Similarly, requests for hosts 
that need election results can be satisfied. 
 
A bus arriving at a hub takes the queries/results along its route, 
deposits any results, issues new queries to the hub and moves to 
its next station. Following are the key features of the interaction 
of a bus with the hubs: 
a) Each hub maintains several queues, namely, queues for 

queries/results to be sent along bus routes, queues for 
results to be received, and a query execution queue. 

b) Results brought by the bus are bulk data from which the 
query results can be selected. Thus, there is high likelihood 
of result sharing (saving the cost of re-executing the query 
from scratch). 

. 
 
 
 
 
 

 
 
 
 
 
 
 
 

3. SIMULATION MODEL 
A simulation model of BUDDIES has been developed using the 
method of Discrete Event Simulation. As for now, this is a 
restricted model. It takes in to account a network that consists of 
4 Hubs. The hierarchy is not included in the model so as to keep 
it simple. All the hubs are assumed to have the same interests. 
They are connected via two acyclic routes. If a, b, c and d are 
the four hubs, then along one route those are connected as a-b-c-
d while the other route connects the hubs as d-c-b-a. Because 
the routes are acyclic, along each route, there are two terminal 
points, which are the first and the last sites respectively. The 
query frequency at each hub is assumed to be a constant and is 
the same for all the hubs. The bus frequency along each route is 
also assumed to be a constant and is the same for both the 
routes. Every query that is posed by a client is assumed to 
access a fixed a number of data objects. 
 
Let 'B' be the bus inter-arrival time along the two routes and 'Q' 
be the query inter-arrival time at each hub.  A query is modeled 
as a set of sub-queries, where each sub-query is a request for 
one of the data objects, that the query accesses. The query is 
said to be satisfied, only if the requests for all the sub-queries 
are satisfied. 
After every Q milli seconds, a query is generated at each hub. 
Once a query is generated, it is enqueued in the wait list, 
maintained for each of the hubs. Using the metadata at the hub, 
the route along which each of the sub-queries is to be sent is 
calculated. For each sub-query, it is checked if the same sub-

query has already been sent along the particular route. If so, the 
sub-query is kept on wait for the result, or else the sub-query is 
enqueued in a queue that maintains all the sub-queries that are 
to be sent along that route. 
After every B milli seconds, a bus is started at each beginning 
terminal. Starting from the terminal point, the bus hops from 
one site to the other, depending on the order in which the sites 
are strung together along the route. When the bus arrives at a 
particular site the following are done: 
1) For every result in the bus, it is checked if there is any sub-
query in wait for the result along that route. If so, the sub-query 
is removed from the wait queue and is said to be satisfied.  
 2) For every sub-query in the bus, it is checked if the hub can 
process it. If so, the sub-query is removed from the bus and a 
request for processing it is placed at the hub. 
3) All the sub-queries that are to be sent along that route are 
loaded onto the bus. 
4) When the hub gets a request for processing a sub-query, it 
retrieves the result of the sub query and enqueues the result into 
a queue, which maintains the list of results that have to be sent 

along a particular route. Results from this queue are dequeued 
one after the other and loaded onto the bus if it has sufficient 
space.  
3.1 Issues to be addressed 

The simulation model aims to resolve the following issues 
regarding the performance of BUDDIES across various network 
topologies and application domains: 

• For different query frequencies, evaluate the effect of 
commonality on the average response time. 

• Evaluate the behavior of average response times for 
different query frequencies, when the average size of a data 
object is large/small and the network bandwidth is 
high/low. 

Figure 1: Architecture of BUDDIES             Cricket  

            Election 

a-m       Hubs 

A-G      Groups of hosts 

Figure 2: Response times for different query inter-arrival times at 
commonality 30 
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• Given a query frequency, the maximum tolerable response 
time, the commonality level and various other factors like 
average size of the data objects and network bandwidth, 
find the operable bus frequencies and the optimum bus 
size. 

3.2 Results and Observations 
As of now, the simulation model has been tested for two 
different scenarios.  

Scenario 1: The size of each of the data objects in the database 
is small, the network bandwidth is low and the number of data 
objects that a query accesses is small. This is analogous to the 
case in which a server disseminating cricket scores has to handle 
a very large number of requests and the allocated bandwidth is 
considerably low. 
To simulate this scenario, the values of the different parameters 
of the model are as follows: 

Size of each of the data objects 1000 bytes 

Size of the database 200 data objects 

No. of data objects accessed by a query 10 data objects 

Maximum no. of queries per bus 40 

Maximum no. of query results per bus 4 

Network bandwidth 0.8kbps 

 
Figure2 and Figure3 show the results for scenario 1. 
 
From Figure2 it is observed that: 
1) For a given query frequency, as the bus frequency decreases, 
the response time increases gradually till a particular bus 
frequency (knee bus frequency) and then shoots up.  
2) At higher bus frequencies, higher query frequencies have 
higher response times than those at the lower ones. However, 
for considerably low bus frequencies, the higher query 
frequencies show lower response times than those at the lower 
ones. 
3) At higher query frequencies the knee bus frequency is almost 
3-4 times lower than the query frequency, whereas for lower 
query frequency it is only 2-2.5 times lower than the query 
frequency. 
The total response time of a query can be divided in to 3 parts, 
namely, wait time, processing time (at the intermediary and 
final hubs) and transmission time (time taken to transmit the 
results from the server to the client along a route). As the bus 
frequency decreases, not only more queries get accumulated, but 
also the average wait time per query also increases. Below a 
certain bus frequency, the wait time starts dominating the 
accumulation effect and hence the response time shows a sharp 
increase beyond the knee frequency. 
At low query frequencies, there is less accumulation of common 
queries, because of which more number of results may have to 
be transmitted. This increases the average transmission time per 
query. Because the network is a very slow one, the high 
transmission time dominates the total response time. Hence, at 
lower query frequencies, the response time increases at a faster 

rate when compared to that at higher query frequencies. In fact, 
below a certain bus frequency, it is higher than that at high 
query frequencies. 
 
On comparing Figures 2 and 3 the following observations are 
made. 
1) For a given query frequency, the knee bus frequency is lower 
at a higher commonality, when compared to that at a lower 
commonality.  
2) For a given query frequency, at any bus frequency the 
response time is low when the commonality is high and vice-
versa. 
In this case, because the commonality is higher, the average 
response time decreases due to higher accumulation effect. The 
same explains for the shift in the knee bus frequency for a given 
query frequency. 
  
 

 
 Figure 3: Response times for different query inter-arrival times at 

commonality 80.  

Scenario 2: The size of each of the data objects in the database 
is large, the network bandwidth and the number of data objects 
that a query accesses is high. This is analogous to a situation in 
which the data of interest is multimedia files of very large sizes, 
when the bandwidth available is high and the response time 
should be reasonable, even at peak loads.  
 
To simulate this scenario, the values of the parameters taken are 
as follows: 

Size of each of the data objects 50,000 bytes 

Size of the database 1000 data objects 

No. of data objects accessed by a query 50 data objects 

Maximum no. of queries per bus 500 

Maximum no. of query results per bus 10 
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Network bandwidth 50kbps 

Figures 4 and 5 show the results for scenario 2 
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The following are observed from Figure 4: 
1) For a given query frequency, as the bus frequency decreases, 
the average response time gradually goes up.  
2) The average response times for higher query frequencies are 
higher than those of the lower frequencies. 
For a given query frequency, as the bus frequency decreases the 
average wait time increases, thus increasing the average 
response time. As the query frequency increases, the average 
wait time and the average processing time per query also 
increases and vice versa. Although there is higher accumulation 
of queries at high query frequencies, compared to that at the 
lower query frequencies, due to the high network bandwidth, 
average transmission time per query fails to dominate the 
response time. This results in the response time being always 
higher at high query frequencies than that at low query 
frequencies. 
Since this is a network with a high bandwidth, one can afford to 
have high bus frequency, without compromising much on the 
network resources. This works out fine, because as one can see 
from Figure4, for a given query frequency, as the bus frequency 
increases, the response time decreases. To strike a balance 
between response time and utilization of network resources, one 
can choose a suitable bus frequency (given the query 
frequency). 
 
In Figure5, initially, as the query frequency decreases, the 
lowest bus frequency for the desired response time gradually 
increases, and beyond a threshold value it settles to an almost 
constant value. This is explained as follows: 
When the query frequency decreases below a particular value 
(depending on the desired response time), less number of 
queries will be accumulated before the arrival of a bus. As a 
result, although total number of queries generated in the 
network is less, the total number of queries that will need 
individual processing increases. This also increases the need for 
more number of buses to ship the results to the originating sites. 
Hence, to get the desired response time, at low query 

frequencies, the bus frequency needs to be kept the same as that 
at higher query frequencies (despite the decrease in query 
frequency). 

 

 
 
 
 
 
 

 
 
 
 

Figure 4: Response times for different query inter-arrival times at
commonality 50 

 
Figure 5: Cut off bus frequencies for different query inter-arrival
times at commonality 50.  

 

4. CONCLUSION 
We have shown that BUDDIES provides satisfactory results 
under certain restricted network and domain conditions. 
Considerable experimentation still remains to be done so that 
the various parameters (e.g., the optimum bus frequency on a 
route given the query frequency on that route and the network 
constraints) can be adjusted accordingly.  This experimentation 
has to extend not only across various network topologies, but 
also across various domains, so as to see for which kind of 
applications BUDDIES is best suited to.  
The BUDDIES framework can be extended to provide 
differentiated services. This can be accomplished by using 
priority-based routes. For a given source and a destination, 
different routes may have different priority levels, depending on 
the importance of the data and the users along the particular 
route. Accordingly, network bandwidth can be distributed 
among the routes. Thus routes having high bandwidth can 
operate buses at high frequencies to provide very low response 
times, whereas those having low bandwidth can operate buses at 
considerably low frequencies, thus compromising the response 
time to an extent. 
One can also extend the framework to provide automatic data 
dissemination. For example, consider a cricket result server. 
Instead of waiting for user requests for cricket scores, the server 
can send the results on its own accord on the appropriate routes. 
However, this may increase the data-filtering overhead on the 
client side. Therefore, the decision regarding what kind of data 
can be disseminated automatically has to be taken very 
meticulously. 
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