
BUDDIES: Bus Driven Data Dissemination System

Gitika Aggarwal Krishnaveni Budati Kamalakar Karlapalem
Centre for Data Engineering

International Institute of Information Technology
{gitika,krishnaveni}@students.iiit.net, kamal@iiit.net

ABSTRACT
The dramatic improvements in global interconnectivity due to
intranets and the Internet have led to an explosion in the number
and variety of data-intensive applications. More importantly, the
large volumes of data available for general access and the
rapidity with which these data change make it very difficult for
users to track the data that they are interested in. Also,
scalability is a central requirement in dissemination systems due
to the huge number of users and large amount of information.
This is demonstrated by frequent delays and service disruptions
when accessing shared networked data sources. To overcome
scalability issues, considerable research has been going on to
minimize redundant server operations and maximize and
prioritize bandwidth utilization while aiming for a reasonable
(may not be the best) response time. In this paper, we introduce
the idea of BUDDIES, a new protocol for data dissemination
that can also be extended to automatic data dissemination and
differentiated services.

Keywords
Data dissemination, data transfer, web data access.

1. INTRODUCTION
Various data applications like servers that provide online
monitoring of election results and results of cricket matches
suffer from scalability problems. This issue of scalability
manifests itself mainly due to the ever increasing size of the
user base, which results in several serious problems like server
overloading and clogging of the network leading to
unacceptably high response times and sometimes, never ending
waits (maybe because of server crashes). Therefore, to
overcome these issues concerning scalability, massive work on
efficient data dissemination has been going on. Several server
side-scheduling algorithms [1, 2, 8, and 9] have been developed
that aim at reducing redundant server side operations by
calculating the results to a query once and disseminating the
results either by broadcast or multicast.
The ability of a web service to provide reasonably low response
times to access its contents is constrained by available network
bandwidth. It is important for the service to manage available
bandwidth wisely. In the past, web sites have used ad-hoc
solutions to deal with peak loads or in general to come up with a
strategy to tackle user requests. Differentiated service can allow
the system to provide better service for certain customers while
gracefully degrading the service for other less important
customers. While providing differentiated quality of service is
typically enforced through network mechanisms, some systems

have been introduced that provide a robust mechanism for
managing network resources at the application level. One such
system [3] uses a method called Quality Aware Transcoding that
allows web servers to customize the size of objects constituting
a web page, and hence the bandwidth consumed by that page,
by dynamically varying the size of multimedia objects on a per-
client basis.
Another pressing issue is that of automatic data dissemination.
The tools and systems for information dissemination are
becoming crucial in a variety of application environments in
both the Internet and intranets [4]. In general, users subscribe to
such systems by providing lists of topics they are interested in.
Whenever new data is available for distribution, the system
disseminates it to the users who may be interested in such data
based on the user preferences. Several such systems have been
developed [4, 5 and 6]. However, the method of user
subscription provides very static user profiles. In the case where
in the users’ interests change dynamically, this method will need
a more efficient and user-friendly alternative so as to facilitate
the users in specifying their preferences. Also, as the user base
increases, scalability issues also come in to the picture

The remainder of the document is organized as follows. Section
2 introduces the core idea of BUDDIES, explains the
terminology used in the subsequent sections and presents the
architecture of BUDDIES. Section 3 describes the simulation
model developed, presents the issues of concern and the
simulation results. Section 4 concludes the document with a
note on the future work.

2. BUDDIES
In the system developed by Wolf et al [7], the users in the
network are grouped based on some heuristic (like physical
proximity) and each group is assigned a router. BUDDIES
combines the idea of grouping users along with the idea of data
multicast. However, instead of grouping users purely on the
basis of physical proximity, BUDDIES groups them on the basis
of similar interests as well as proximity. For example, consider
two kinds of data – election results and cricket scores. All sites
that are interested in the election results and are also sufficiently
close to one another fall in one group. Sites those are interested
in cricket scores are grouped similarly. The main point behind
grouping sites like this is to try to avoid redundant server
operations (section 2.1) as far as possible. Therefore, if one can
group users with similar interests and string those along one or
more virtual network routes, then sending just one packet of
data along this route may suffice, with a little compromise on

Page 1 of 6

the response time. This will not only save a number of
redundant server operations but will also save on the network
bandwidth.

2.1 Terminology
Redundant Server Operations - The operations executed by a
server are said to be redundant when it has to execute the same
query again and again but for different users, even when these
query requests are not much separated in time. Several factors
determine the minimum distance between two query requests
such as desired response time. The role of response time is
explained more in section 2.2.
Bus - A data structure that is a wrapper around a set of queries
and a set of query results. The bus hops from one site to another
along a pre-specified route.
Route - A virtual path, connecting sites having common
interests or that exchange some data that is of common interest
and are also reasonably close to each other with respect to the
network topology. The routes may be cyclic or acyclic.

Hub - The sites those are capable of query processing. If a hub
does not have the data required to process a query, it will
forward the query to another hub that can either process this
query or that will forward it. Hubs can accept queries from
users.

Host - The sites that cannot process any queries. These are
only client machines that accept queries from the user and
forward those to the designated hub (explained later) and send
the query results back to the user.
Terminal – The sites that form the beginning and end points for
a bus along a route. In the case of an acyclic route, there will be
two terminals, which are the first and the last sites along the
route that constitute the beginning and the end points of the
route. For a cyclic route, both the terminal points are the same.
Query - A client request for data. The type of query depends on
the particular domain. It may be a simple set of keywords or it
can also be an SQL query. Each query typically accesses some
data objects that may be present either at a single hub or may be
distributed at different hubs. A data object may be a relational
table or a flat file (or any other form of data chunk), depending
on the domain.

Database – The entire collection of data objects distributed
among the hubs.

Query frequency - The frequency with which a host/hub gets
query requests from users. This is measured in terms of the
inter-arrival time between successive query requests.
Bus frequency - The frequency at which a bus is generated at
the beginning terminal point along a route. This is measured in
terms of the time between successive bus generation events.
The higher the inter arrival time; the lower is the bus/query
frequency. In the rest of the document, the terms bus/query
frequency and bus/query inter-arrival times are used
interchangeably while bearing in mind the interpretation of each
term as specified earlier.

Commonality – The set of data items common to two or more
queries is called the commonality between these queries. It is
expressed as a percentage. For example, if the commonality
between two or more queries is 10%, it implies that the

intersection of common data objects accessed by these queries is
10% of the total number of data objects accessed by each query.

Response Time - The total time span between the arrival of the
user request and the time when the entire result of the query
reaches the respective host/hub.

Wait time - The total time span between the arrival of a user
request and the time when it is loaded on to a bus.

Knee bus frequency – For a given query frequency, as the bus
frequency decreases the average response time increases
gradually till a particular value and then increases drastically.
This particular value of the bus frequency is called as the knee
bus frequency for the given query frequency.

Accumulation effect – When more number of queries get
accumulated, there is a high probability that the result of one
might satisfy several others. This, leads to a low average
response time. This effect is called ‘accumulation effect’.

2.2 Architecture of BUDDIES

Web sites in this system are organized in a two level hierarchy.
The topmost level consists of sites acting as hubs, while the
second level consists of sites, referred to as hosts which are in
the regional area of one or more hubs. Hubs are connected with
each other through prefixed routes, referred to as bus routes,
based on their common interests and their proximity to each
other. Hubs with similar interests and placed very far from each
other are connected through different routes. The hosts in a
regional area are connected to a particular hub, via routes. The
hosts forward their queries to this hub. Figure.1 shows the web
system architecture in BUDDIES.

2.2.1 Data Dissemination
The results to the user queries are disseminated as follows:
• A query arriving at a host is forwarded to its designated

hub.
• Query and hub metadata relate the query content with

certain hubs that can either directly satisfy the query or are
known to contain links to hubs that can.

• Buses operating along the various routes take the queries
and deposit them at hubs that are either capable of
processing the queries or forwarding those to other hubs.
(Depending on the query and hub metadata stored in it, a
hub may decide what alternative routes should be
followed).

• Buses transfer intermediate results found to the hub/host
that issued the query.

For example, consider Figure 1, the broken lines represent the
routes along which we have hosts/hubs that are interested in
election results, whereas the firm lines represent the routes that
connect hosts/hubs that are interested in cricket scores. Cluster
B represents a group of hosts that are interested in cricket
scores. There may be one or more routes connecting these hosts
together. The requests generated by these hosts are forwarded to
the hub f. From this hub, the requests are forwarded to hub e
along route 9. Hub e forwards the requests to hub c along route
10, which in turn forwards it to the server 'g' (which is also a
hub). The requests are processed at the server and the results
may be returned along the same route or through a different

Page 2 of 6

route (that serves similar interests). Similarly, requests for hosts
that need election results can be satisfied.

A bus arriving at a hub takes the queries/results along its route,
deposits any results, issues new queries to the hub and moves to
its next station. Following are the key features of the interaction
of a bus with the hubs:
a) Each hub maintains several queues, namely, queues for

queries/results to be sent along bus routes, queues for
results to be received, and a query execution queue.

b) Results brought by the bus are bulk data from which the
query results can be selected. Thus, there is high likelihood
of result sharing (saving the cost of re-executing the query
from scratch).

.

3. SIMULATION MODEL
A simulation model of BUDDIES has been developed using the
method of Discrete Event Simulation. As for now, this is a
restricted model. It takes in to account a network that consists of
4 Hubs. The hierarchy is not included in the model so as to keep
it simple. All the hubs are assumed to have the same interests.
They are connected via two acyclic routes. If a, b, c and d are
the four hubs, then along one route those are connected as a-b-c-
d while the other route connects the hubs as d-c-b-a. Because
the routes are acyclic, along each route, there are two terminal
points, which are the first and the last sites respectively. The
query frequency at each hub is assumed to be a constant and is
the same for all the hubs. The bus frequency along each route is
also assumed to be a constant and is the same for both the
routes. Every query that is posed by a client is assumed to
access a fixed a number of data objects.

Let 'B' be the bus inter-arrival time along the two routes and 'Q'
be the query inter-arrival time at each hub. A query is modeled
as a set of sub-queries, where each sub-query is a request for
one of the data objects, that the query accesses. The query is
said to be satisfied, only if the requests for all the sub-queries
are satisfied.
After every Q milli seconds, a query is generated at each hub.
Once a query is generated, it is enqueued in the wait list,
maintained for each of the hubs. Using the metadata at the hub,
the route along which each of the sub-queries is to be sent is
calculated. For each sub-query, it is checked if the same sub-

query has already been sent along the particular route. If so, the
sub-query is kept on wait for the result, or else the sub-query is
enqueued in a queue that maintains all the sub-queries that are
to be sent along that route.
After every B milli seconds, a bus is started at each beginning
terminal. Starting from the terminal point, the bus hops from
one site to the other, depending on the order in which the sites
are strung together along the route. When the bus arrives at a
particular site the following are done:
1) For every result in the bus, it is checked if there is any sub-
query in wait for the result along that route. If so, the sub-query
is removed from the wait queue and is said to be satisfied.
 2) For every sub-query in the bus, it is checked if the hub can
process it. If so, the sub-query is removed from the bus and a
request for processing it is placed at the hub.
3) All the sub-queries that are to be sent along that route are
loaded onto the bus.
4) When the hub gets a request for processing a sub-query, it
retrieves the result of the sub query and enqueues the result into
a queue, which maintains the list of results that have to be sent

along a particular route. Results from this queue are dequeued
one after the other and loaded onto the bus if it has sufficient
space.
3.1 Issues to be addressed

The simulation model aims to resolve the following issues
regarding the performance of BUDDIES across various network
topologies and application domains:

• For different query frequencies, evaluate the effect of
commonality on the average response time.

• Evaluate the behavior of average response times for
different query frequencies, when the average size of a data
object is large/small and the network bandwidth is
high/low.

Figure 1: Architecture of BUDDIES Cricket

 Election

a-m Hubs

A-G Groups of hosts

Figure 2: Response times for different query inter-arrival times at
commonality 30

Page 3 of 6

• Given a query frequency, the maximum tolerable response
time, the commonality level and various other factors like
average size of the data objects and network bandwidth,
find the operable bus frequencies and the optimum bus
size.

3.2 Results and Observations
As of now, the simulation model has been tested for two
different scenarios.

Scenario 1: The size of each of the data objects in the database
is small, the network bandwidth is low and the number of data
objects that a query accesses is small. This is analogous to the
case in which a server disseminating cricket scores has to handle
a very large number of requests and the allocated bandwidth is
considerably low.
To simulate this scenario, the values of the different parameters
of the model are as follows:

Size of each of the data objects 1000 bytes

Size of the database 200 data objects

No. of data objects accessed by a query 10 data objects

Maximum no. of queries per bus 40

Maximum no. of query results per bus 4

Network bandwidth 0.8kbps

Figure2 and Figure3 show the results for scenario 1.

From Figure2 it is observed that:
1) For a given query frequency, as the bus frequency decreases,
the response time increases gradually till a particular bus
frequency (knee bus frequency) and then shoots up.
2) At higher bus frequencies, higher query frequencies have
higher response times than those at the lower ones. However,
for considerably low bus frequencies, the higher query
frequencies show lower response times than those at the lower
ones.
3) At higher query frequencies the knee bus frequency is almost
3-4 times lower than the query frequency, whereas for lower
query frequency it is only 2-2.5 times lower than the query
frequency.
The total response time of a query can be divided in to 3 parts,
namely, wait time, processing time (at the intermediary and
final hubs) and transmission time (time taken to transmit the
results from the server to the client along a route). As the bus
frequency decreases, not only more queries get accumulated, but
also the average wait time per query also increases. Below a
certain bus frequency, the wait time starts dominating the
accumulation effect and hence the response time shows a sharp
increase beyond the knee frequency.
At low query frequencies, there is less accumulation of common
queries, because of which more number of results may have to
be transmitted. This increases the average transmission time per
query. Because the network is a very slow one, the high
transmission time dominates the total response time. Hence, at
lower query frequencies, the response time increases at a faster

rate when compared to that at higher query frequencies. In fact,
below a certain bus frequency, it is higher than that at high
query frequencies.

On comparing Figures 2 and 3 the following observations are
made.
1) For a given query frequency, the knee bus frequency is lower
at a higher commonality, when compared to that at a lower
commonality.
2) For a given query frequency, at any bus frequency the
response time is low when the commonality is high and vice-
versa.
In this case, because the commonality is higher, the average
response time decreases due to higher accumulation effect. The
same explains for the shift in the knee bus frequency for a given
query frequency.

 Figure 3: Response times for different query inter-arrival times at

commonality 80.

Scenario 2: The size of each of the data objects in the database
is large, the network bandwidth and the number of data objects
that a query accesses is high. This is analogous to a situation in
which the data of interest is multimedia files of very large sizes,
when the bandwidth available is high and the response time
should be reasonable, even at peak loads.

To simulate this scenario, the values of the parameters taken are
as follows:

Size of each of the data objects 50,000 bytes

Size of the database 1000 data objects

No. of data objects accessed by a query 50 data objects

Maximum no. of queries per bus 500

Maximum no. of query results per bus 10

Page 4 of 6

Network bandwidth 50kbps

Figures 4 and 5 show the results for scenario 2

Page 5 of 6

The following are observed from Figure 4:
1) For a given query frequency, as the bus frequency decreases,
the average response time gradually goes up.
2) The average response times for higher query frequencies are
higher than those of the lower frequencies.
For a given query frequency, as the bus frequency decreases the
average wait time increases, thus increasing the average
response time. As the query frequency increases, the average
wait time and the average processing time per query also
increases and vice versa. Although there is higher accumulation
of queries at high query frequencies, compared to that at the
lower query frequencies, due to the high network bandwidth,
average transmission time per query fails to dominate the
response time. This results in the response time being always
higher at high query frequencies than that at low query
frequencies.
Since this is a network with a high bandwidth, one can afford to
have high bus frequency, without compromising much on the
network resources. This works out fine, because as one can see
from Figure4, for a given query frequency, as the bus frequency
increases, the response time decreases. To strike a balance
between response time and utilization of network resources, one
can choose a suitable bus frequency (given the query
frequency).

In Figure5, initially, as the query frequency decreases, the
lowest bus frequency for the desired response time gradually
increases, and beyond a threshold value it settles to an almost
constant value. This is explained as follows:
When the query frequency decreases below a particular value
(depending on the desired response time), less number of
queries will be accumulated before the arrival of a bus. As a
result, although total number of queries generated in the
network is less, the total number of queries that will need
individual processing increases. This also increases the need for
more number of buses to ship the results to the originating sites.
Hence, to get the desired response time, at low query

frequencies, the bus frequency needs to be kept the same as that
at higher query frequencies (despite the decrease in query
frequency).

Figure 4: Response times for different query inter-arrival times at
commonality 50

Figure 5: Cut off bus frequencies for different query inter-arrival
times at commonality 50.

4. CONCLUSION
We have shown that BUDDIES provides satisfactory results
under certain restricted network and domain conditions.
Considerable experimentation still remains to be done so that
the various parameters (e.g., the optimum bus frequency on a
route given the query frequency on that route and the network
constraints) can be adjusted accordingly. This experimentation
has to extend not only across various network topologies, but
also across various domains, so as to see for which kind of
applications BUDDIES is best suited to.
The BUDDIES framework can be extended to provide
differentiated services. This can be accomplished by using
priority-based routes. For a given source and a destination,
different routes may have different priority levels, depending on
the importance of the data and the users along the particular
route. Accordingly, network bandwidth can be distributed
among the routes. Thus routes having high bandwidth can
operate buses at high frequencies to provide very low response
times, whereas those having low bandwidth can operate buses at
considerably low frequencies, thus compromising the response
time to an extent.
One can also extend the framework to provide automatic data
dissemination. For example, consider a cricket result server.
Instead of waiting for user requests for cricket scores, the server
can send the results on its own accord on the appropriate routes.
However, this may increase the data-filtering overhead on the
client side. Therefore, the decision regarding what kind of data
can be disseminated automatically has to be taken very
meticulously.

REFERENCES
[1] H.D. Dykeman, M. Ammar, and J.W.Wong. Scheduling

algorithms for videotex systems under broadcast delivery.

In IEEE International Conference on Communications,
pages 1847{1851, Toronto, Canada, 1986

[2] J.W.Wong. Broadcast delivery. Proceedings of IEEE,
76(12): 1566{1577, December 1988

[3] Surendar Chandra, Carla Schlatter Ellis, Amin Vahdat.
Differentiated Multimedia Web services using quality
aware transcoding

[4] T.W. Yan and H. Garcia-Molina. The SIFT Information
Dissemination System. ACM TODS, 24(4): 529.565, 1999.

[5] D. Gifford, R. Baldwin, S. Berlin, and J. Lucassen.
Architecture for Large Scale Information Systems. In Proc.
Of the Symposium on Operating System Principles, pages
161.170, 1985.

[6] D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using
Collaborative Filtering to Weave an Information

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Content-
based addressing and routing: A general model and its
application. Technical Report CU-CS-902-00, Department
of Computer Science, University of Colorado, Jan. 2000

[8] C.J. Su and L. Tassiulas. Broadcast scheduling for
information distribution. In Proc. IEEE INFOCOM, 1997.

[9] N.H. Vaidya and S. Hameed. Data broadcast in
asymmetric wireless environments. In Proc. of Workshop
on Satellite-based Information Services (WOSBIS), New
York, November 1996.

Page 6 of 6

	INTRODUCTION
	BUDDIES
	Terminology

	SIMULATION MODEL
	A simulation model of BUDDIES has been developed using the m
	Scenario 2: The size of each of the data objects in the data
	Figures 4 and 5 show the results for scenario 2
	4. CONCLUSION
	REFERENCES

