Design and Implementation of MPISAI

Bhaskaran .V, Vijay Krishna .P, Sai Swaminathan. G, Phani kumar .N,

 Pandurangan .N and Baruah P.K.
Department of Mathematics and Computer Science

Sri Sathya Sai Institute of Higher Learning, Prashanthinilayam, India.

Introduction:

 MPI programming is best suited for exploiting the tremendous combined power of a heterogeneous cluster of workstations. There are many implementations of this standard currently available. However, a majority of them do not support execution across different platforms. MPISAI is a cross-platform implementation of MPI 1.1. The primary goal of MPISAI is to propose an implementation that supports an efficient fault tolerance scheme. The special features of MPISAI include the facility for easy creation of parallel libraries and an interactive user interface for setting up the execution environment. It is developed using DCOM, a high‑level network protocol, which enables distributed COM‑based components to interoperate across a network.

Design of MPISAI

Components
· MPIRUN: a graphical user interface for setting up the execution environment for any MPI application to be run. This includes allocation of ranks to processes, distributing the load and redirecting the I/O of all the processes.

· DAEMON: the DCOM object, which forms the core of the implementation and is responsible for inter-process communication. It can concurrently execute its methods from different threads; hence can support multiple clients at the same time. It maintains various data structures for storing information regarding communication domains, topology, user defined data types and process synchronization. It also maintains storage for buffering messages from user processes in the local host and is aware of the overall distribution of the processes across the execution environment.

· INTERMEDIATE: a library, linked statically to the user process, which acts as an interface between the user process and the Daemon. Details specific to a user process are stored in the corresponding Intermediate. This includes rank of the process in various communication domains, user defined operations and datatypes, error handling information and attribute caching. It also holds handles for the opaque objects stored in the Daemon. Process specific calls are handled in the Intermediate itself, thereby avoiding a lot of unnecessary load on the Daemon.

Interactions between the Components

Execution Environment Setup

Step 1: MPIRun invokes the Daemon on all the hosts and sends the particulars like the program path, number of processes as specified by the user.

Step 2: Each Daemon starts the user processes in its host machine as shown in the figure below.
[image: image6.wmf]User Process

Intermediate

 Daemon

Data

returned

Daemon

call

The different levels of interaction can be categorized as below:

· Local process interactions (LPI)

· Local host interactions (LHI)

· Remote host interactions (RHI[image: image7.wmf] I

UP

 I

 D

UP

 D

)

· Global interactions (GI)

[image: image8.wmf]UP

 D

UP

UP

 D

UP

UP

 D

UP

[image: image9.wmf]Intermediate

User process

Data

returned

MPI call

User process area

Implementation of MPISAI

In this section we discuss the implementation of some basic MPI functions. We discuss the steps involved in the Daemon and the Intermediate.

MPI_Send (void *buffer, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

In the Intermediate:

Since the Intermediate is linked to each of the processes as a static library, it holds the rank of the process that calls MPI_Send. This rank is attached to the message and passed to the Daemon that runs in the local host by invoking the Send method in the Daemon.

In the Daemon:

1. The Daemon receives the message from the user process.

2. Finds the host of the process with the destination rank in the communication domain.

3. If destination host is a remote host, the data is passed on to that host by invoking the Send method of the Daemon in that host.

4. If the destination rank is in the same host, the data is packed in a Message and added to the buffer.

5. An event is set to signal arrival of data from source to destination.

MPI_Recv (void* buffer, int count, MPI_Datatype datatype,

 int source,int tag, MPI_Comm comm, MPI_Status *status)
The steps involved in this call are:

In Intermediate:

Since the Intermediate is linked to each of the processes as a static library, it holds the rank of the process that calls MPI_Recv. This rank is attached to the message and passed to the Daemon that runs in the local host by invoking the Receive method in the Daemon.

In Daemon:

1. Waits on an event which signals arrival of data from source.

2. If the source argument is given as MPI_ANY_SOURCE then it waits on a set of events.

3. If the matching send is a synchronous transfer, sets an event to signal the start of MPI_Recv.

4. If a proper Message is present, copy it into buffer, else return.

5. Fill status object with appropriate values.

MPI_Ssend (void *buffer, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

This is similar to MPI_Send. A bit is set to specify that send is synchronous. The operations as in MPI_Send are executed. At the end of this, it waits on event, which signals the start of a recv.

MPI_Isend (void *buffer, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

This is similar to MPI_Send. The only difference here is that a thread is spawned and allocated the job of the corresponding blocking call.
Graphical User Interface

It has been observed that many of the MPI implementations do not have a user-friendly execution environment, which makes parallel programming a tedious task. MPISAI provides a graphical user interface for setting up the MPI execution environment. This is a unique feature in MPISAI. This will encourage many programmers to use this environment and execute their programs with much ease. The user is also provided with various options to choose the mode of execution (fault tolerant or otherwise), workload distribution etc.
Cross Platform Execution
To have a system that supports cross-platform execution of parallel programs it is necessary to adopt a highly generic design strategy that minimizes the number of platform specific components.

Let us suppose we have a ‘Mediator’ entity for each host h through which each of the processes in that host communicate. If a process p1 running on a host h1 needs to communicate with another local process p2, p1 passes the message to mediator m1 running on h1, and m1 communicates it to p2. If a process p1 running on h1 needs to communicate with a process p2 running on h2, p1 passes the message to mediator m1 running on h1, m1 communicates with mediator m2 running on h2 and m2 finally delivers the message to p2. In such a mode of communication we need to concentrate on the cross-platform issues only across the m1-m2 communication channel independent of the number of processes running on h1 and h2. If a new host with a different platform is added to the system, all that is required is to adapt the Mediator component that handles specific issues, if any, for that platform.

In MPISAI, the Daemon plays the role of the Mediator. Some of the cross platform issues that arise in a heterogeneous environment like, Endianness and Structure Packing, were resolved by taking advantage of DCOM implementations available on various platforms. DCOM uses RPC, which has been implemented for a wide range of platforms. Some of them include EntireX DCOM for Linux(Intel),Digital UNIX(Alpha), Sun Solaris(Sparc) and IBM OS/390 platform.
Fault Tolerance

Even though it is not possible to decrease the rate of failure of distributed systems without making the individual components very expensive, it is possible for these aggregate systems to survive failures due to the autonomous nature of the components. In MPISAI, this role is played by the Daemon. It is totally responsible for fault detection and recovery of the system.

The Fault tolerance scheme proposed here is of two types

· Centralized approach for a node failure

· Distributed approach for a process failure.

The proposed scheme also provides:

· Application independence: Fault tolerance is provided for any MPI application.

· Application transparency: Failures are invisible to the application.

Each Daemon handles the local process failures and recovery. This is transparent to other processes and Daemons. This scheme is independent of the nature of the application being run. The Daemon marked as the central controller deals with node failures and recovery. This scheme can tolerate multiple process or node failures.
Process Failure Detection

· A buffer is maintained for each local process to keep a record of the call history.

· The Daemon starts an observer thread that waits on the set of handles of the local processes.

· The return value of the method in the Daemon is stored in the buffer of the process that invoked the method. For a send method, the message is also stored.

· When a process completes gracefully, it calls MPI_Finalize.

· Whenever the observer thread detects a process termination it checks whether the process has called MPI_Finalize. If not, the process is marked for recovery.

· The observer thread continues.

Process Recovery

· A new process is created and is assigned the rank of the terminated process.

· The buffer of the terminated process is attached to the recovered process.

· The recovered process directly obtains the return values available in the buffer for all the function calls that were made by the failed process.

· For a recv call, the message is obtained from the buffer of the sending process if the process is in its recovery phase.

· When the process crosses recovery phase, normal execution continues.

Node Failure Detection and Recovery

· One of the Daemons is marked as the central controller – MainDaemon.
· The MainDaemon periodically contacts the other Daemons to check if they are running.

· If a Daemon does not respond, the node is considered to be lost.

· Each Daemon periodically updates the central backup in the MainDaemon.

· The processes under the failed node are now redistributed along with the corresponding backup values to another host that is available.

· The new host starts the processes.

Performance

Numerical Integration
The performance of MPISAI was tested using an algorithm that computes numerical integration using the trapezoidal rule. It computes the area of the ith trape​zoid and adds it into the sum of the areas of the previous i ‑ 1 trapezoids. The time complexity of this algorithm is T (n) = k1 n + k2, or more generally T (n) (k1 n, where k1 and k2 are constants. Increasing n by a factor of r, would also increase T (n) by the same factor.

The time taken by the program which finds the integration of the function f (x) = x2 +x3+x4, within the limits 0 and 1, was calculated. Table1 shows the results obtained when computed with different values of n by the serial version of the program.

	Trapezoids (n)
	10000800
	20001600
	40003200
	80006400

	Time in ms
	2243
	4476
	6719
	8972

The total execution time for the parallel program with P processes can be estimated as:

 T (n, P) = k1 (n /p) + k2 log2 (P) + k3, for some constants k1, k2, and k3.

The values of k1, k2 and k3 are estimated experimentally. The final time complexity of the parallel program is given by T (n, p) = k1* (n/p) + k2 log2 (p).

Table below contains the predicted speedups (Pred.) and the actual speedups (Act.) obtained on MPISAI

	
	Number of trapezoids

10000800 20001600 40003200 80006400

	Procs
	Pred
	Act.
	Pred
	Act.
	Pred
	Act.
	Pred
	Act.

	2
	1.94 1.93

2.70 2.60

3.90 3.60
	1.97 1.95

2.80 2.70

3.70 3.50
	1.98 1.94

2.80 2.70

3.80 3.60
	1.98 1.95

2.85 2.70

3.89 3.60

	3
	
	
	
	

	4
	
	
	
	

The speedup estimates are quite good if p is small. However as p increases, the estimates deteriorate- especially if p is large and n is small. Graph on the left below.

[image: image1.wmf]1.94

1.97

1.98

1.98

1.93

1.94

1.95

1.95

1.9

1.92

1.94

1.96

1.98

2

10000800

20001600

40003200

80006400

Number Of Trapezoids

Speedup(p=2)

Predicted

Actual

 EMBED Excel.Sheet.8 [image: image2.wmf]3.9

3.7

3.8

3.89

3.55

3.4

3.6

3.58

3

3.2

3.4

3.6

3.8

4

10000800

20001600

40003200

80006400

No. of trapezoids

Speedup(p=4)

Predicted

Actual

The above experiment was conducted on a heterogeneous cluster, with Linux and Windows operating systems. It was observed that these results are quite similar to those obtained on a homogeneous cluster.

The performance in the fault tolerance mode is shown below. The graph below shows total execution time of an application wherein one of the processes was repeatedly terminated at different stages in its lifetime.

 Fig a. Process terminated 8 times at each stage

[image: image3.wmf]25903

28601

33293

35689

0

10000

20000

30000

40000

20

40

60

80

Life Time of Process (%)

Time

(milliseconds)

T

he performance is

 Fig b. Process terminated 16 times at each stage

[image: image4.wmf]39908

46767

49581

54907

0

10000

20000

30000

40000

50000

60000

20

40

60

80

Life Time of Process (%)

Time

(milliseconds)

Matrix Multiplication

Another application that was used to test the performance of MPISAI was parallel matrix multiplication. The experiment was carried out with four workstations (768 MHz Intel processors with Windows 2000). The table below compares the performance of the parallel matrix multiplication program against the serial version of the program for matrices of different sizes. It may be noted that the speedup is remarkably pronounced for higher orders of the matrix.

[image: image5.wmf]0

20

40

60

80

100

120

500

700

800

1000

matrix order n

parallel

serial

Performance of Matrix Multiplication in MPISAI

Applications on MPISAI

Some of the applications developed and tested over MPISAI include Parallel Optical Character Recognition and Parallel Edge Detection. Significant improvements in performance were noticed over their serial versions.

Conclusion

MPISAI was envisioned to provide efficient and reliable high performance computing over heterogeneous workstation clusters and simplify the development of parallel software. The flexible architecture of MPISAI lends itself easily to the development of efficient cross platform and fault tolerance schemes, which are vital requirements in any distributed environment. MPISAI is a step in the direction of enabling application programmers and developers to use MPI and promote the development of parallel software libraries.

Acknowledgement
Authors dedicate the work to the Chancellor of the institute Bhagawan Sri Sathya Sai Baba.

Reference
1. Eddon Guy and Henry Eddon," Inside Distributed COM", Redmond, Wash. Microsoft Press, 1998.

2. Jack Dongarra. "MPI Complete Reference" MIT Press 1995.

3. Kandemir, Manhut and Meenakshi. A Kandaswami "A Unified Framework for optimizing Locality, Parallelism and Communication on out-of-core computations" IEEE Trans. on Parallel and Distributed Systems, 2000.

4. MA Baker and HW Yau. Cluster computing Review, Syracuse University, 1995.

5. Pacheco Peter S. "Parallel Programming with MPI" Morgan Kauffman Publishers, Inc.1997.

�

fig 2 LHI

Host n

Host 1

� EMBED Word.Picture.8 ���

 RHI

�

 GI

�

 LPI

2

1

 UP-User Process I-Intermediate D-Daemon

2

1

UP

UP

UP

UP

UP

MPIRun

Daemon

Daemon

_1075145031.xls
Chart2

		10000800		10000800

		20001600		20001600

		40003200		40003200

		80006400		80006400

Predicted

Actual

No. of trapezoids

Speedup(p=4)

3.9

3.55

3.7

3.4

3.8

3.6

3.89

3.58

Sheet1

		

								1		200

								2

								3		160

								4		155

						10000800		3.9		3.55

						20001600		3.7		3.4

						40003200		3.8		3.6

						80006400		3.89		3.58

Sheet1

		

No. of processes

Time(sec)

Sheet2

		

Predicted

Actual

No. of trapezoids

Speedup(p=4)

Sheet3

		

		

3.9

3.7

3.8

3.89

3.6

3.5

3.6

3.6

3.2

3.4

3.6

3.8

4

10000800

20001600

40003200

80006400

Number of trapezoids

speedup(p=4)

Predicted

Actual

3.9

3.7

3.8

3.89

3.6

3.5

3.6 3.6

3.2

3.4

3.6

3.8

4

10000800 20001600 40003200 80006400

Number of trapezoids

speedup(p=4)

Predicted

Actual

MBD000825FC.xls

Chart5

			10000800			10000800

			20001600			20001600

			40003200			40003200

			80006400			80006400

Predicted

Actual

Number of trapezoids

speedup(p=4)

3.9

3.6

3.7

3.5

3.8

3.6

3.89

3.6

Sheet1

			

						20						14080

						40						14410

						60						14931

						80						15011

												10000800						1.94						1.93						1.93

												20001600						1.97						1.95						2.6

												40003200						1.98						1.94						3.6

												80006400						1.98						1.95

									10000800			2.7			2.6

									20001600			2.8			2.7

									40003200			2.8			2.7

									80006400			2.85			2.7

									10000800			3.9			3.6

									20001600			3.7			3.5

									40003200			3.8			3.6

									80006400			3.89			3.6

Sheet1

			0

			0

			0

			0

Life Time of Process (%)

Time
(milliseconds)

Graph 1

0

0

0

0

Sheet2

			0			0

			0			0

			0			0

			0			0

Predicted

Actual

Number Of Trapezoids

Speedup

0

0

0

0

0

0

0

0

Sheet3

			0			0

			0			0

			0			0

			0			0

Predicted

Actial

Number of trapezoids

Speedup

0

0

0

0

0

0

0

0

			0			0

			0			0

			0			0

			0			0

			0			0

Predicted

Actual

Number of trapezoids

speedup(p=4)

0

0

0

0

0

0

0

0

0

0

			

			

_1137156451.xls
Chart8

		20

		40

		60

		80

Life Time of Process (%)

Time
(milliseconds)

25903

28601

33293

35689

Sheet1

		

				20				25903

				40				28601

				60				33293

				80				35689

								10000800				1.94				1.93				1.93

								20001600				1.97				1.95				2.6

								40003200				1.98				1.94				3.6

								80006400				1.98				1.95

						10000800		2.7		2.6

						20001600		2.8		2.7

						40003200		2.8		2.7

						80006400		2.85		2.7

						10000800		3.9		3.6

						20001600		3.7		3.5

						40003200		3.8		3.6

						80006400		3.89		3.6

								10000800

								20001600

								40003200

								80006400

Sheet1

		0

		0

		0

		0

Life Time of Process (%)

Time
(milliseconds)

0

0

0

0

Sheet2

		0		0

		0		0

		0		0

		0		0

Predicted

Actual

Number Of Trapezoids

Speedup

0

0

0

0

0

0

0

0

Sheet3

		0		0

		0		0

		0		0

		0		0

Predicted

Actial

Number of trapezoids

Speedup

0

0

0

0

0

0

0

0

		0		0

		0		0

		0		0

		0		0

		0		0

Predicted

Actual

Number of trapezoids

speedup(p=4)

0

0

0

0

0

0

0

0

0

0

		

		

T

he performance is

T he performance is

_1137156609

_1078065082.doc

 I

UP

 I

 D

UP

 D

_1075107510.xls
Chart2

		10000800		10000800

		20001600		20001600

		40003200		40003200

		80006400		80006400

Predicted

Actual

Number Of Trapezoids

Speedup(p=2)

1.94

1.93

1.97

1.95

1.98

1.94

1.98

1.95

Sheet1

		

				20				14080

				40				14410

				60				14931

				80				15011

								10000800				1.94				1.93				1.93

								20001600				1.97				1.95				2.6

								40003200				1.98				1.94				3.6

								80006400				1.98				1.95

						10000800		2.7		2.6

						20001600		2.8		2.7

						40003200		2.8		2.7

						80006400		2.85		2.7

Sheet1

		0

		0

		0

		0

Life Time of Process (%)

Time
(milliseconds)

Graph 1

0

0

0

0

Sheet2

		0		0

		0		0

		0		0

		0		0

Predicted

Actual

Number Of Trapezoids

Speedup

0

0

0

0

0

0

0

0

Sheet3

		0		0

		0		0

		0		0

		0		0

Predicted

Actial

Number of trapezoids

Speedup

0

0

0

0

0

0

0

0

		

		

_1075109060.xls
Chart9

		20

		40

		60

		80

Life Time of Process (%)

Time
(milliseconds)

39908

46767

49581

54907

Sheet1

		

				20				39908

				40				46767

				60				49581

				80				54907

								10000800				1.94				1.93				1.93

								20001600				1.97				1.95				2.6

								40003200				1.98				1.94				3.6

								80006400				1.98				1.95

						10000800		2.7		2.6

						20001600		2.8		2.7

						40003200		2.8		2.7

						80006400		2.85		2.7

						10000800		3.9		3.6

						20001600		3.7		3.5

						40003200		3.8		3.6

						80006400		3.89		3.6

								10000800

								20001600

								40003200

								80006400

Sheet1

		

Life Time of Process (%)

Time
(milliseconds)

Sheet2

		

Predicted

Actual

Number Of Trapezoids

Speedup

Sheet3

		

Predicted

Actial

Number of trapezoids

Speedup

		

Predicted

Actual

Number of trapezoids

speedup(p=4)

		

		

