

Abstract:
In this paper, we describe a cost-effective
Multiple-Camera Vision system using low cost
simple FireWire web cameras. The FireWire
cameras, like other FireWire devices operate on
the high speed FireWire bus. Current supported
bandwidth is 400 Mbps. Right from its
introduction, the FireWire (synonymously known
as IEEE 1394) bus interface specification has
proved its capabilities and has been supported
by both developers and users. Due to its low cost
and ease in connecting, FireWire has been
recommended as the technology to be used in
Machine-Vision systems and Image-processing
applications. We have developed a Multiple-
camera synchronized Vision system using
FireWire cameras. The synchronization has been
achieved using “Software Triggering” which has
been discussed in the paper. Possible
applications of such a system have also been
discussed in the paper. Our system does away
with the need of costly cameras and frame-
grabber cards which are generally used in
conventional multiple-camera systems. The
direct pixel-to-data correspondence without the
need of a frame grabber or classic
synchronization systems (requiring Hardware
synchronization mechanisms) justifies the
novelty of such a system. Calibration of the
multiple camera system has also been discussed.

I .Introduction:
 Vision is seen as the primary input
for robot applications that need to be
performed in short time and efficiently.
Keeping this in mind, vision researchers
around the world have been working on
developing efficient algorithms and vision
systems that can accomplish this task. As for
vision systems are concerned, several
panoramic and stereo vision systems have
been developed in the past. Many multiple-
camera systems have been developed which

help in recreating 3D models and
applications such as Virtual Reality, which
need mixing of humans with artificial data.
Multiple camera systems such as AVIARY
and Easy-Living (by Microsoft Research)
were among the first of this kind of systems.

 A Cost-effective Multiple Camera Vision System
 using FireWire Cameras and Software Synchronization

However, problems arose with these systems
due to reasons such as high-cost (costly
cameras and frame-grabber cards), lack of
mobility and complicated hardware
synchronization mechanisms (which hinder
the mobility of such systems).

Piyush Kumar Rai
Undergraduate Student
Computer Science and
Engg.,
IT-BHU, Varanasi-5,
UP, India.
rai_piyush@yahoo.co.in

Kamal Tiwari
Undergraduate Student
Computer Science &
Engg.,
IIT Kanpur,
Kanpur, UP, India.
kamalt@iitk.ac.in

Prithwijit Guha
PhD. Student
Electrical Engg.,
IIT Kanpur,
Kanpur, UP, India.
pguha@iitk.ac.in

Amitabha Mukerjee
Professor
Computer Science and
Engg.,
IIT Kanpur,
Kanpur, UP, India.
amit@cse.iitk.ac.in

Hence, in our approach, we are using simple
and low-cost FireWire web cameras for
image-acquisition, which operate on
FireWire (IEEE 1394). The IEEE 1394
specification offers a bandwidth of 400
Mbps, which is suitable for such systems
dealing with large amounts of data transfer.
These cameras do not have the capability of
hardware synchronization as in case of high-
cost “pan and tilt” cameras, so we propose a
software based synchronization mechanism
for such a system using a server-client
model.

II. Features of the system:

The system offers following advantages
over the existing systems:

Cost effectiveness: The FireWire web
cameras used in the setup are much cheaper
than the traditional high-cost pan and tilt
cameras and frame-grabber cards.

Scalability: Any number of cameras can be
added to such a system (of course, limited
by the capability of communication channel,
through which the individual cameras
communicate to the server PC). Also, any
number of cameras can be removed from the
system without affecting the system. This
makes the system entirely reconfigurable.

Software Synchronization: Provides a
synchronized capture capability, which is
very crucial for such multiple camera
systems.

Setup and Hardware:
The setup has a 4 meter cubical covered
with green curtains from three sides to
minimize the noise due to light intensity
fluctuations. Fourth side of the cubical is a
calibrated white display screen controlled by
a projector which is placed outside the
cubical. An integral part of this setup is a set
of three firewire cameras mounted on
strategic position across this cube so as to
cover the entire workspace within. The
camera calibration is through the technique
of SELF CALIBRATION which will
accomplish the task of calibration in bits of
seconds. This setup will help an accurate
background subtraction and silhouette
estimation. The 3 FireWire cameras
mounted on 3 different machines running on
Linux act as client PCs and send the
captured images to a centralized server,
which controls and coordinates the client
PCs.

The library libraw1394 provides direct
access to the IEEE 1394 bus through the
Linux 1394 subsystem's raw1394 user space
interface. Another library libdc1394 is
intended to provide a high level
programming interface for application
developers who wish to control IEEE 1394
based cameras that conform to the 1394-
based Digital Camera Specification.
However, we wanted to make a new API on
top of the existing API so that it is easier to
use the cameras for image acquisition and
processing in our application programs. So,
instead of writing the lengthy routines, the
users can call the simple functions in the
new API and at the same time remain
transparent to the lower-level functions.

Initially, the server waits for connections
from different clients. When the connections
are established, it triggers all the clients
simultaneously for grabbing the images. The
clients grab the images and send the
images/processed results from images to the
server where the server displays them after
combining the results from clients.

Issues in Multiple camera setup

The server triggers the clients
simultaneously but whether they get
triggered at the same time or not, depends
upon several factors. We shall discuss them
one by one:
Network Latency: The server can send a
multicast message to all the client. However,
the difference of time in getting this
message by first and last client will depend
upon the current load of the network. In an
unloaded network, this latency may be very
small (~ 1ms), but for heavily loaded
network, these delays may be indeterminist
and significant.

Scheduling in Linux: The Linux kernel is
non-preemptive. So, it is the Linux kernel
which dictates how fast the clients can
respond to the trigger signal by the server.
Present Linux kernels have a time-slice of
10 ms which can cause different clients to be
marked-off by the multiples of 10 ms.
Running the clients with a real-time priority
would be a way to get a deterministic
behavior from the system but the standard
Linux kernel doesn’t support this. However,
the RTLinux patch can be used for running
our processes in Real-Time.

Camera specific features: Delays may also
be caused by the camera drivers and the
hardware. One can not know precisely how
long does it take for the camera to start
grabbing the frame after getting the trigger
signal from the client. We assume this delay
to be same for all the clients.

Synchronization of clients: Our setup uses
cheap FireWire cameras, which do not have
support for Hardware synchronization like
the costly SONY DFW-V5000 digital
camera. Some other FireWire based cameras
do provide the support for external hardware
based triggering, but these are much costly
than the simple ADS PYRO camera we are
using. Hardware triggering would require
additional hardware and cabling which
would hinder the mobility of the system.
Therefore, we propose a software based

synchronization. The scheme is given
below.

Software Synchronization: In our setup
there are currently one server and three
clients. Each client has a FireWire camera.
The camera captures a 320X240 frame in
YUV422 format, converts it to 320X240
RGB and sends to the server for further
processing. For processing we need data
coming from different clients to be
synchronized, that is data sent from different
clients should correspond to same time
coordinate. For achieving this goal we need
to synchronize the clocks of all the clients
with the clock of the server. One way to do
this is to simply send the time of the server
clock to all the clients and setting the time of
the client to the time value send by the
server. But the problem in this approach is
that the time taken to send time related data
from server to client requires time, which
adds a substantial discrepancy in
synchronization of clients. This problem is
solved by calculating the time for sending
data from server to client over the network
by sending some test data and calculates the
network “lag”. Now “lag” is added to server
time and sent to all the clients. Clients
accept this value as their time value thereby
synchronizing their clocks with the server
time.

Display of the data received: At the server,
we have different processes running for
different clients. So to display the data
received by these processes at one place we
need these processes to communicate with
each other. For inter-process communication
we have used the appropriate functions.
Using them, we created a pool of shared
memory and all the processes shared this
pool. Now the child process running on the
server, which is necessarily dedicated to a
client, receives data from the client and
writes it in the shared memory part
described by a “SHMID” and also sets the
flag corresponding to this client as “1”
which is an indication to the parent process
that data is available for this particular
client. When value of this flag becomes “1”

for all the child processes, it means that the
synchronous data from all the clients is
available and server may read it from the
shared memory part described by the same
value of “SHMGET”. Once the data is read
by the parent process, it sets the value of
flags to “0” to ask more data from the child
processes.

Synchronized Image Acquisition: The
software architecture for this setup is shown
in the next figure. There is one server,
which has three processes running. One is
the main process, which gives the command
to clients for image grabbing and controls
and coordinates the clients for synchronous
image capture. One process uses the frames
stored in the shared memory, does the
required image processing and stores the
processed images again in the shared
memory. Another process also uses
theshared memory and displays the images
sent by all the clients or the processed image
results.

The server synchronizes the clients
according to its clock at the start of the
program.

Synchronization Error measurements:
Because of the reasons responsible for
improper synchronization, the Clients may
not be perfectly synchronized. As a test for
this, we made a small test program which
used to print numbers in an increasing order,
every milliseconds. We put two cameras in
front of the computer screen and let them
grab the computer screen images when the
test program is running. For small frame-
rates, sometimes, the both images differed a
bit(by around 5 milliseconds in some cases),
but with 30 fps, that we were using in our
experiments they were perfectly matching.
Synchronization would considerably
improve if we run the client processes with
real-time priority.

Camera Calibration: Calibration of the
cameras was done through self-calibration
technique to avoid the manual work in

calibrating the setup every time before
running an application in the setup.

III. Applications

We used our own custom made
libraries for image processing routines. They
include several APIs for image processing
applications. All are written in C++. As our
setup was ready with continuous image
grabbing, we did several image processing
experiments in Real-Time using a single
camera as well as multiple camera setup.
These included Online Edge Detection,
Background subtraction, Histogram
calculation, Meanshift Tracking, Skin
Detection etc. For Tracking, we used the
Mean Shift approach. In this approach, the
most probable target position is found out in
the current frame. The difference between
the target model and the target candidates is
expressed by a term obtained using “The
Bhattacharya Coefficient”. We implemented
the single Meanshift tracker as well as the
Multiple Meanshift Tracker, where three
different part of the body (e.g. left & right
hands and the face) could simultaneously be
tracked. The results are shown at the server
for all the three views.

The system was calibrated and used in 3D
reconstruction and applications such as 3D
Immersive environments. The calibration is
achieved using the self-calibration
mechanism. This method of calibration does
not use a calibration object. By moving a
camera in a static scene, the rigidity of the
scene provides in general two constraints on
the camera’s parameters from one camera
displacement by using image information
alone. Three images taken by a same camera
with fixed intrinsic parameters are sufficient
to recover both intrinsic and extrinsic
parameters.

Virtual Galaxy: This is a virtual galaxy
designed in OpenGL. The virtual galaxy is
projected on the display screen and a person
standing inside the cubicle holds a laser
pointer which he can move in any direction
with a constraint that the pointer is visible in
all camera views. Now the 3D coordinates

of this pointer are computed using the
calibration parameters and the view of the
displayed galaxy is changed according to the
changing 3D coordinates of the pointer. In
this way the motion of moving laser pointer
is superimposed to the virtual galaxy. The
distributed processing done at the clients
takes off the load from the server and hence
speed up the computationally intensive
processes.

IV. Future work
This setup is nothing but our virtual reality
workspace in which a person will perform
gestures and we will track them in 3-D
coordinates using the views from the
mounted cameras. The images from the
cameras will be used to estimate the global
coordinates of the human inside using stereo
calibration.

In the Virtual Chess playing utility, a
standard chess board will be projected on
the white display screen and a skilled player
standing inside the workspace of the setup
will signal towards a chess board square
appearing on the screen in front of him. This
gesture will activate the actor standing on
that particular square and the actor will be
moved to a different square depending on
the motion of the player’s hand.

The architecture of the multicamera
setup has been shown in the following
diagrams.

 Grabbing commands commands Results Processing Results Processing

 ETHERNET

The Clients have two processes
running. One is the image grabbing

Client PC

 Frames Shared Memory
 Images
 Capture

 Commands

Image
Processing

Grabbing
Process

FireWire
Camera

 commands

Server PC
Synchronizes the
clients first and
then gives the
capture commands

 Shared Memory

Server’s Main
Process

Processed
Images Image

Display

Process which issues the grabbing commands to the FireWire cameras and stores the results
in a shared memory. Another process does image processing at the client and sends th
processed images to the server.

e

Signal to the
projector Cubicle

 Client1

 Client2
Display

Computational
server

Client3

References

1.Tomas Svoboda and Peter Sturm II. A
convenient multi-camera self-calibration for
virtual environments. In Computer Analysis
of Images and Patterns, pages 183-190.
2. Martin Armstrong, Andrew Zisserman,
and Richard I. Hartley. Self-calibration
from image triplets. In ECCV (1), pages 3-
16, 1996.
3. Joshua Gluckman and Shree K. Nayar.
Real-time software synchronization.
4. R. Hartley and A. Zisserman: Multiple
View Geometry in Computer Vision,
Cambridge University Press, UK, 2000
5. Ivana Mikic, Koshika Huang and
Mohan Trivedi: Activity Monitoring and
Summarization for an Intelligent Room,
IEEE workshop for Human Motion, Pages-
107-112,December 2000
6. Mei Han and Takeo Kanade: Creating
3D models with uncalibrated cameras:
Proceeding of IEEE (WACV 2000),
December 2000.
7. Mark Pollefeys, Reinhard Koch, and
Luc Van Gool. Self-calibration and metric
reconstruction inspite of varying and
unknown intrinsic camera parameters. Inter-
national Journal of Computer Vision,
32(1):7-25, August 1999.
8. Anurag Mittal and Larry S. Davis.
M2tracker: A multi-view approach to
segmenting and tracking people in a
cluttered scene using region-based stereo. In
A. Heyden, G. Sparr, M. Nielsen, and P.
Johansen, editors. The seventh European
Conference on Computer Vision,
ECCV2002, volume 1 of LNCS, pages 18-
36).
9. S. Veigl, A. Kaltenbach, F. Ledermann,
G. Reitmayr, and D. Schmalstieg. Use of
FireWire cameras in augmented reality,
2002.
10. X.-F. Zhang, An Luo, Wenjing Tao,
and Hans Burkhardt. Camera calibration
based on 3dpoint- grid. In ICIAP (1), pages
636-643, 1997.

11. Q. Luong and O. Faugeras. Self-
calibration of a moving camera from
point correspondences and fundamental
matrices, 1997.

	III. Applications
	IV. Future work
	References

