Optimizing the performance of N-Version independent programs

M.Malhotra

Department of Computing
Imperial College
London SW7 2BZ
Email: m.malhotra@doc.ic.ac.uk

Abstract - The purpose of this research is to optimize the
performance of an N-Version computer system by altering the
performance of processors. The paper proposes a critical computer
that can execute independent programs consisting of three versions
and a voter. Using a simulation tool and four sets of differing tasks
it determines the effect on task execution time of altering the speed
of individual processors. Results show that increasing processor
speed does not result in all tasks taking less time to execute, as a
matter of fact some tasks take longer to execute. Similarly reducing
processor speed results in some tasks taking less time to execute.
Results show that is possible to reduce power consumption by
reducing the speed of a processor that executes voters. It is also
possible to reduce power consumption and the execution time of
particular tasks by reducing the speed of a processor executing a
version. Results show it is possible to predict if a task will take
longer or less time to execute due to a change in processor speed,
but it is not possible to quantify by how much.

I Introduction

Computer systems are increasingly being used to perform
critical tasks. At the same time processors are becoming
faster and can perform more tasks in the same time period as
older processors. Therefore critical computer systems can
now be used to control a larger number of instruments and
devices rather than just a few. To control a large number of
instruments a computer system will have to perform a large
number of independent tasks. The purpose of this research is
to investigate techniques of optimizing the execution of a
proposed critical computer system that performs independent
tasks.

Microprocessors are usually available in a number of
different packages, clock frequencies and features. The cost
and performance of these processors varies. Normally higher
performance microprocessors cost more and consume more
power, while lower performance microprocessors cost less
and consume less power. One technique of reducing cost and
power consumption is to use lower performance
microprocessors or to alter the clock frequency of a
processor. Reducing the clock frequency of a microprocessor
generally results in lower power consumption. The technique
has been used on a number of spacecrafts the author has
worked on, such as the Cassini Magnetometer computer [1].
The time taken to execute tasks in a critical computer system
is important and is often a measure of how frequently an
instrument is sampled or monitored. The purpose of this

research is to investigate the effect of altering processor speed
on the execution time of tasks in a particular architecture.

Past and existing critical computer systems have used a
technique called N-Version programming to tolerate faults
[2][3][4]1[5]. N-Version programming consists of one or
more versions of the same program and a voter. The voter
inputs results from the different versions and then outputs a
result based on a majority vote. The technique of N-Version
programming relies on differences between versions to
tolerate faults. It is possible to create the differing versions
using a number of techniques, such as by writing the same
program in different languages.

The technique of N-Version programming has been the
subject of a number of independent studies. However, the
technique requires further investigation because most critical
computer systems use redundancy to tolerate faults. To
reduce the risk of common faults designers often introduce
differences between redundant units. Therefore, there will be
differences between tasks executed on different redundant
units.

II. Proposed Architecture

In the experiment that follows each task will consist of
three differing versions and a voter. Figure 1 shows the
proposed computer architecture that will execute tasks
consisting of three versions and a voter [6].

> Processor 1 Version 1

Input

Processor 2 | Version2 | Processor4 | Output

Version 3

> Processor 3

Figure 1.Architecture of Three-Version system
In Figure 1 Processor 1, Processor 2 and Processor 3 each
receive the same input and execute version 1, version 2 and
version 3 of each task respectively. These three processors
output a result to Processor 4. Processor 4 executes the voter

of each task and outputs a result based on a majority vote. The
computer system will execute a maximum of one thousand
independent tasks.

The processors will execute independent tasks in
pre-emptive multi-tasking environment. The four processors
execute independent tasks in a round-robin manner allocating
each task equal processing time. As soon as a task completes
it is rescheduled. Therefore, tasks are being continuously
executed and even if one task takes too long it will not
prevent the execution of other tasks.

III Task Execution Time

Four sets of tasks, with different execution times, have
been created for purpose of experiment [7]. The execution
time of versions were based on those performed by Cassini
Magnetometer computer [1][7]. Simultaneously, experiments
performed by Bagley have also shown that execution times of
versions will differ [9]. These four sets of tasks will be
referred to as Taskset 1, Taskset 2, Taskset 3 and Taskset 4.
Each task set contains execution time of three different
versions for one thousand tasks. A simulation tool called
NVP has been created to simulate the execution of tasks and
determine task execution time. The NVP tool inputs task
execution times from Taskset 1, Taskset 2, Taskset 3 or
Taskset 4 and then perform a simulation.

The NVP tool performs simulations with logarithmically
increasing number of tasks. The NVP tool performs
simulations over three task ranges. First, the tool simulates
execution of one to ten tasks increasing in steps of one task.
Second, the tool simulates execution of ten to one hundred
tasks increasing in steps of ten tasks. Finally, the tool
simulates execution of one hundred to one thousand tasks
increasing in steps of one hundred tasks. The aim is to
observe any trends over the three task ranges and to study the
effect of increasing number of tasks. Therefore, it is
necessary to perform several simulations with different
number of tasks rather than only for a fixed number of tasks.

In each simulation the NVP tool records the time taken to
execute the slowest task (i.e. the task that takes longest to
execute), the fastest task (i.e. task that takes least amount of
time to execute) and a particular task, which in this case is
task one. The time taken to execute the fastest task is referred
to as Min Task, while the time taken to execute the slowest
task is referred to as Max Task. The execution time of all
tasks will be between Max Task and Min Task and this
enables a study on all the tasks in a simulation.

Over each task range the gradient of a best-fit line is
calculated. Figure 2 shows the execution time of task one
with increasing number of tasks and the line of best fit. The
gradient of best-fit line is a measure over ten different
simulations of varying number of tasks, rather than for a fixed
number of tasks. Once the gradient of best-fit line is
determined the difference between estimated time taken (i.e.
gradient of line of best-fit multiplied by number of tasks) and

simulated time taken is recorded for each simulation. The
difference between expected and measured execution time is
used to calculate the standard deviation. This value gives an
indication of degree of best-fit line and level of noise in the
system.

Figure 2 Time taken to execute Task One

1400
1200
1000

800
600 .

|~
g

4

P

L o
.

400
200

o}

Time Taken to execute Task One

1 2 3 4 5 6 7 8 9 10
Number of Tasks

& Task One Best Fit Line

Table 1 shows the result from simulations where the speed
of all processors is identical. The column Data is the task set
used in a simulation, while No. of tasks is the task range. In
each simulation the time taken to execute slowest task, fastest
task and task one is recorded. In Table 1 Min-Grad is the
gradient of line of best fit for the fastest task. Similarly,
Max-Grad and Task 1-Grad are the gradient of best-fit line for
slowest task and task one respectively. In Table 1 Min-Stdev,
Max-Stdev and Task 1-Stdev are the standard deviation of
data between line of best fit and measured execution time.

Table 1 Simulation result

Taskset No. of Min | Min Max | Max | Taskl | Taskl
Tasks Grad | Stdev | Grad | Stdev | Grad | Stdev
Tasksetl | 1-10 53 45 123 35 103 59
10-100 29 112 117 154 73 178
100-1000 16 553 106 | 1316 81 1922
Taskset2 | 1-10 48 47.7 98 12 97 21
10-100 31 107 103 160 78 189
100-1000 14 | 1038 103 928 78 676
Taskset3 | 1-10 47 49 137 17 105 36
10-100 31 53 119 149 93 103
100-1000 13 | 1478 98 878 73 801
Tasksetd | 1-10 44 17 97 34 47 16
10-100 31 68 97 199 41 127
100-1000 6 739 98 976 44 406

IV Reducing the speed of a Processor

This experiment aims to determine the effect of reducing
processor speed. In this experiment the speed of Processor 4
and Processor 1 will be reduced by fifty percent. The figure of
50% was chosen in order to make the results easy to interpret.
The NVP tool will simulate this effect by increasing the effect
on processor clock. So the slice time will be as before

however, the processor clock will increase by double this
amount. This experiment consists of two simulations.

In the first simulation the speed of processor 4 is reduced
by fifty percent. Processor 4 executes the voter of each task. If
the versions are not ready for voting then the voter executes in
one unit because it simply has to check if all the versions have
been completed. If the versions are ready for voting then the
voter executes in five units. Voting only begins after all the
versions have been executed. The voter spends most of its
time waiting for version to complete. Therefore, reducing the
speed of processor 4 may have a negligible effect on the time
it takes to execute tasks.

In the second simulation the speed of processor 1 is
reduced by fifty percent. Processor 1 executes version one of
each task. Therefore, reducing processor 1 speed will mean
that version one of each task will take longer to execute. As a
result reducing processor speed will cause tasks to take longer
to execute.

V' Reducing Processor 4 Speed

Figure 3 is a graph of percentage change in the gradient of
Min-Grad (i.e. the fastest task in the data). This shows that
Min-Grad generally changes by less than 5%. This change is
within the margin of error for the simulation tool (i.e. +/-5%).
The only exception to this is with Taskset 2 and over the
range one hundred to one thousand tasks. Over this range
Min-Grad decreases by 7.7%. This decrease is accompanied
with a fifty percent decrease in standard deviation. The
decrease is not typical of the other tasks sets and may be
attributed to noise. So this change may be attributed largely to
noise. Therefore, reducing the speed of processor 4 has a
negligible effect on Min-Grad.

Figure 4 Percentage change in Max-Grad

e
n

(=]

L} L}
0.5 - Taskset 1 IIL:Z Ta t 3 Ta,

[= |

% Change in Max gradient
TN

'
S

-2.5
Data

ONo. Tasks 1-10 B No. Tasks 10-100 ONo. Tasks 100-1000

Figure 4 is a graph of percentage change in gradient of the
slowest task in the data. This graph also shows that Max-Grad
changes less than 5%. Therefore, this technique has
negligible effect on the slowest task.

Figure 4 Percentage change in Max-Grad

0.5

0.5 4—Taskset 1 kset 2 TaglkSet 3

Ta

% Change in Max gradient

Data

O No. Tasks 1-10 B No. Tasks 10-100 ONo. Tasks 100-1000

Figure 5 is a graph of the percentage change in the
gradient of task one. The change in gradient of task one is
less than the margin of error for the simulation tool.
Therefore, this technique has a negligible effect on the
execution time of tasks. This suggests that the speed of
processor 4 can be reduced without increasing the time it
takes to execute tasks

Figure 5 Percentage change in Task 1-Grad

1.5

0.5

0 T T q—l !
| [Tagks¢t 1 Taskset 2 Taskset 3 Tagkset 4

% Change in Task 1 gradient

-1 (.
15

Data

O No. Tasks 1-10 B No. Tasks 10-100 ONo. Tasks 100-1000 |

VI Reducing Processor 1 Speed

Figure 6 shows the percentage decrease in Min-Grad
when the speed of processor one is reduced by fifty percent.
This graph shows that Min-Grad decreases between 30%
and 50%. The only exception to this is with Taskset 4. The
fastest task of Taskset 4 data is a special case and executes
within one time slice, as a result its execution time varies
with time. These results suggest that reducing processor 1
speed causes the fastest task to take less time to execute.

Figure 6 Percentage change in Min-Grad

% Change in Min gradient

Data

O No. Tasks 1-10 B No. Tasks 10-100 ONo. Tasks 100-1000 |

Figure 7 shows the percentage increase in Max-Grad
when the speed of processor one is reduced by fifty percent.
This graph shows that Max-Grad increases between 110%
and 170%. The increase in gradient is common to all data
types and this suggests that the result is independent of data.
This means that reducing processor one speed causes the
slowest task to take longer to execute.

Figure 7 Percentage change in Max-Grad

% Change in Max gradient

x©

(=)
1
|

Taskset 1 Taskset 2 Taskset 3 Taskset 4

Data

O No. Tasks 1-10 B No. Tasks 10-100 ONo. Tasks 100-1000

Results suggest that if the speed of processor 1 is reduced
then the following occurs. Faster tasks will take less time to
execute, whereas slower tasks will take longer to execute. If
the speed of processor one is reduced then this will have two
effects. First, version one of each task will take longer to
execute because processor one is taking longer to process
tasks. Second, version two and version three of each task
will take less time to execute. This is because tasks with
version one as the slowest will wait longer for it to complete.
As a result these tasks will require less processing time from
processor two and processor three. So version two and
version three of each task will take less time to execute.

The execution time of tasks in a pre-emptive multitasking
environment varies and is difficult to predict. This makes the
study of independent N-Version programs more complicated.
To assist in solving this problem each task is assigned a
value that is representative of its execution time, and will be
used to predict the time taken to execute a task within a
group of independent tasks. This value will be referred to as
the relative execution time of a task. Tasks with a similar
execution time in a sequential environment should behave in
a similar manner and the relative execution time will be used
to compare tasks.

Figure 8 is a graph of percentage change in Task 1-Grad
when the speed of processor 1 is reduced by fifty percent.
The effect on Task 1-Grad is best explained in relation to the
relative execution time of task one, see Table 2. This shows
that version one of task one in Taskset 1 is the fastest version
(i.e. 2 units) and version three is the slowest (i.e. 98 units).
If the speed of processor 1 is reduced by fifty percent then
version one will probably take twice as long to execute.
However, this should not affect the time it takes to execute
the task because version three is considerably slower.
Version three of this task will take less time to execute
because of the reason mentioned earlier. Therefore, this task
should take less time to execute. This is shown in Figure 8
as a decrease in the gradient of task one (Taskset 1 data).
The gradient of task one in Taskset 1 decreases between
65% and 84%.

Figure 8 Percentage change in Task 1-Grad

200

150

100

50

t 1 Taskset 2 Taskset 3 Taskset 4

-50

% Change in Task 1 gradient

-100
Data

O No. Tasks 1-10 B No. Tasks 10-100 ONo. Tasks 100-1000

Table 2 Task one Relative execution time

Data Execution Time of Task 1
Version 1 Version 2 Version 3
Taskset 1 2 54 98
Taskset 2 78 46 92
Taskset 3 64 78 44
Taskset 4 28 11 47

The gradient of task one in Taskset 2, Taskset 3 and
Taskset 4 increase between 72% and 167% in Figure 8. Table

2 shows that if version one of these tasks takes twice as long
to execute then this will become the slowest version of task
one. For example, in Table 2 the relative execution time of
task one of Taskset 2 data is 78 units, 48 units and 92 units for
version one, version two and version three respectively. If
version one takes twice as long to execute then its relative
execution time will effectively increase to 156 units.
Therefore, version one will become the slowest version. As a
result this task will take longer to execute when the speed of
processor one is reduced by fifty percent.

If version one of task one in Taskset 2 takes twice as long
to execute compared to before then its relative execution time
will be 156 units. Therefore the slowest execution time of this
task will increase from 92 to 156, this is an increase of 70%.
However, the results in Figure 8 indicate that the gradient of
task one of Taskset 2 increases by 165%. Similarly the
relative execution time of task one in Taskset 3 increases by
64%, whereas Figure 8 shows that the gradient of task one in
Taskset 3 increases by 72% and 133%. The relative execution
time of task one in Taskset 4 increases by 19%, whereas the
gradient increases by 83% and 76%. Therefore, the change
in gradient is not proportional to the change in relative
execution time. This means that it is difficult predict how
much faster or slower a task will execute without detailed
simulation.

VI Increasing the speed of a processor

Figure 9 shows percentage change in Min-Grad when the
speed of processor one is increased fifty percent. The graph
shows that Min-Grad decreases when processor one speed is
increased. This means that the fastest task is now taking less
time to execute. The percentage decrease in gradient is
different for each data set, suggesting that the decrease in
gradient is dependent on data.

Figure 9 Percentage change in Min-Grad

0 ' B
-10-—’11” TagksSet 2 Fasles¢t 3

% Change in Min gradient
[
S

Data

O No. Tasks 1-10 B No. Tasks 10-100 ONo. Tasks 100-1000

Figure 10 is a graph of percentage change in Max-Grad.
This shows that Max-Grad increases between 2% and 12%

Figure 10 Percentage change in Max-Grad

% Change in Max gradient
o0
|

Tl C —ml [5

~

Fackeaaid
TasKsSet<

2 Fackeeatd Fackeat Faclecai
- TasKset-r TasKset TasKset>

Data

||:|N0. Tasks 1-10 B No. Tasks 10-100 ONo. Tasks 100-1000

when the speed of processor one is doubled. This means that
in general the slowest task is now taking longer to execute.

In Taskset 1 data version one of task one has the shortest
relative execution time compared to version two and version
three. This means that even if version one takes less time to
execute the voter will have to wait version two and version
three to complete. This suggests that increasing the speed of
processor one will have no effect on this task. However, the
results in Figure 11 show that in general task one is taking
longer to execute. Since version one is taking less time to

Figure 11 Percentage change in Task 1-Grad

% Change in Task 1 gradient
fee]

4 4
2-3
0 4

-2 —Fasksett

Faskset Faskset3 Faskset4—

Data

||:|N0. Tasks 1-10 ENo. Tasks 10-100 ONo. Tasks 100-1000

execute it can only mean that version two and version three
are taking longer to execute.

Results suggest that if processor one speed is doubled then
the effect is as follows. First, version one of each task will
take less time to execute because processor one executes
version one. Second, version two and version three of each
task will take longer to execute. This is because tasks whose
slowest version is one are taking less time to execute.

Therefore, version two and version three of these tasks are
restarting more frequently and so using more time of
processor two and processor three. This means that the effect
of increasing processor speed is dependent on which
processor executes each of the versions.

In the task sets (see Table 2) version one was never the
slowest version of task one. As a result task one of all
Tasksets took longer to execute, i.e. the gradient of task one
increased in Figure 11. Therefore, the experiment was
repeated with version one of task one as its slowest version.
Task one of Taskset 1, Taskset 2, Taskset 3 and Taskset 4
data was replaced with the same task. In this task version one,
version two and version three execute in 90 units, 60 units
and 40 units respectively. The new data is referred to as NT1,
NT2, NT3 and NT4 and is identical to Taskset 1, Taskset 2,
Taskset 3 and Taskset 4 data with the exception of task one.

When executing NT1, NT2, NT3 and NT4 the voter will
wait for version one to complete because it is the slowest
version (i.e. 90 units). If the speed of processor one is
increased fifty percent then version one should execute in half
the time because the next slowest version is version two (i.e.
60 units). The relative execution time will decrease from 90
units to 60 units. Therefore task one relative execution time
will decrease by 33%.

Figure 12 shows a graph of percentage change in Task
1-Grad when processor one speed is increased fifty percent.
Over the one hundred to one thousand task range task one
gradient decreases between 20% and 25%, this is much less
than the expected 33%. This occurs because although version
one is taking less time to execute, version two and version
three are now taking longer to execute

Figure 12 Percentage change in Task 1-Grad

A

% Change in Task 1 gradient
)

Data

O No. Tasks 1-10 B No. Tasks 10-100 ONo. Tasks 100-1000

VII Conclusion

In order to design future critical computer systems it will
be necessary to simulate the effect of optimizing techniques.

The effect of these optimizing techniques on task execution
time is not easily predictable. For example, results showed
that reducing the speed of processor 4 had a negligible effect
on task execution time. This means that to save power
processor 4 could be replaced with a slower and less powerful
processor. If at the same processor 1, processor 2 and
processor 3 were replaced with faster processors, power
consumption should remain as before but tasks should take
less time to execute.

Altering the speed of a processor that executes one of the
versions has a more significant effect. Increasing the speed of
a processor that executes a version does not result in all tasks
taking less time to execute, as a matter of fact results showed
some tasks took longer to execute. Similarly reducing the
speed of a processor that executes a version does not result in
all tasks taking longer to execute. The effect of altering
processor speed on a task is dependent on how long it takes to
execute each of its versions and how the versions are
distribution on processors. Therefore, to simultaneously
effect all tasks it is necessary to increase or decrease the speed
all processors executing a version rather than a single
processor. Alternatively results show it is possible to reduce
the speed of a processor such that certain tasks take longer to
execute, while causing other tasks to take less time to execute.

If the relative execution time of each version is known
then it is possible to predict whether a task will take more or
less time to execute. However, results also showed that the
change in relative execution time is not proportional to the
change in gradient. Therefore, it is difficult to predict
precisely how long a task will take to execute if the
processor speed is increased or reduced with out simulation.
Therefore, changing the speed of a processor may not have
the desired effect on execution time of a task.

VIII References

[1] http://cassini.jpl.nasa.gov

[2] Avizienis A, N-Version approach to fault-tolerant
software, IEEE Trans. Software Eng., Vol. SE-11 No. 12,
Dec 1985, pp1491-1501.

[3] Briere D, Traverse P, Airbus A320/A330/A340 Electrical
Flight Controls A Family of Fault Tolerant Systems,
FTCS-23, Toulouse, France, June 1993, pp616-623.

[4] Yeh Y.C., Dependability of the 777 Primary Flight
Control Systems, DCCA 1995, University of Illinois at
Urbana-Champaign, September 27-29, pp1-13.

[5] Bretz E A, By-wire cars turn the corner, Spectrum,
Vol.38,No 4, April 2001, pp68-73.

[6] Malhotra M, Investigating The Execution of Independent
Multi-Version Programs, 2002 PRDC, Tsukuba, Japan,
December 16-18 2002.

[7] Malhotra M, DASC 2002, Indianapolis, Indiana, U.S.A.,
October 2003.

[8] http://www.sp.ph.ic.ac.uk/cassini/

[9] http://dada.perl.it/shootout/

