
Basic Block Architecture for Power Saving
Dipak Krishnamani, Madhavi Krishnan, Sriram S., Ranjani Parthasarathi

dipak.k@gmail.com, madhavikrishnan@yahoo.com, sriramever@yahoo.co.in, rp@cs.annauniv.edu

Abstract - This paper proposes an innovative method for
reducing the power consumption by handling the architectural
resources at a higher granularity, namely basic blocks. This
facilitates the intelligent use of deterministic clock-gating and is
used to reduce power in PC address calculation, I-Cache and
Functional units. The PC is incremented only once per basic
block instead of incrementing for every instruction. In the I-
Cache, blocks that are not going to be used in the near future
are clock-gated in addition to eliminating dead blocks. The
unused functional units are clock-gated to save power. In this
architecture, we propose two modes of operation for fetching the
basic blocks in order to decrease the latency associated with
branch misprediction, thereby saving power. Simulation results
show an overall reduction in power of about 21%-26% using
this basic block approach.

 Index terms – Basic Block, Clock-gating, Power Saving,
Program Counter, Instruction Cache, Functional unit, Fetch
unit, SimWattch.

I. INTRODUCTION

P

ower is one of the key issues in architecture designs
today. It is a critical issue in embedded and hand held

systems where battery life is important. It is also important in
other devices like servers and desktops where cooling costs
have been increasing exponentially. Hence, power should be
treated as a first class design constraint on par with
performance [1]

In this work, we propose a Basic Block architecture to reduce
the power consumption. The principal aim of our approach is
to handle the entire architecture in terms of basic blocks and
use deterministic clock-gating techniques intelligently. We
make modifications in the I-Cache, PC address calculations
and the fetch unit to support the Basic Block architecture and
evaluate the power characteristics.

The general organization of the paper is as follows, section II
discusses the relevance of related work in this field, Section
III elaborates the concept behind our approach and the power
saving techniques in the architectural resources, Section IV
provides the implementation details and the results, Section V
presents the future work and Section VI concludes the paper.

II. RELATED WORK

Clock power is a major component of microprocessor power.
Clock gating is a well-known technique to reduce clock
power. In the work on clock-gating techniques, Hai Li et al
[2] proposed deterministic clock-gating (DCG) by the key
observation that for many stages of the modern pipeline, a
circuit block’s usage in a specific cycle in the near future is
known ahead of time in contrast to pipeline balancing (PLB)
which uses a predictive methodology based on ILP, to clock-
gate the resources. Their experiments showed an average of
19.9% reduction in processor power with virtually no
performance loss for an 8-wide issue out-of order superscalar
processor by applying DCG. In contrast, PLB achieves 9.9%
average power savings and 7.2% average power-delay
savings, at 2.9% performance loss.

In the TRIPS architecture, K. Sankaralingam et al [3]
proposed a computing system that outperforms evolutionary
architectures on a wide range of applications, achieving
single-chip Tera-op performance that scales with advances in
semiconductor technology. The TRIPS architecture is
fundamentally block oriented and uses grid type architecture.
For ILP and TLP programs, blocks commit atomically and
interrupt is block precise, meaning that they are handled only
at block boundaries. It is noted that the architecture is
designed towards higher performance rather than power
efficiency.

Mohan Kabdi et al proposed DBEC [4], a scheme that
consists of invalidating and turning off power to cache lines
that are occupied by the “dead” instructions i.e., the
instructions that are not “live” at a particular point of program
execution. These are the instructions that would not be used
again before being replaced in the cache. The effect of this
dead block elimination in cache, on both the power
consumption of the I-cache and the performance of the
processor was studied. The mechanism yielded an average of
about 5% to 16% reduction, in the energy consumed for
different sizes of I-cache without any performance
degradation.

mailto:dipak.k@gmail.com
mailto:madhavikrishnan@yahoo.com
mailto:sriramever@yahoo.co.in
mailto:rp@cs.annauniv.edu

III. OUR PROPOSAL

We propose an innovative Basic Block architecture aimed at
power saving rather than performance. This model is at a
higher level of granularity, compared to the instruction-level
handling of present architectures, The primary unit of our
architecture, Basic block [5], is a stream of instructions with a
single point of entry and exit with no change in flow of
control in between. The information about basic blocks that is
provided by the compiler is exploited for reducing power
consumption. While the concept is applicable for all/many of
the architectural resources, to start with, we demonstrate the
use of the Basic Block Architecture in a few units. The
selection of the units is based on the following

According to Pareto Analysis, 80% of the power is consumed
by 20% of the resources [6]. Fig.1 below shows the output
obtained by running the benchmark Compress on SimWattch
1.02. It is observed that the power consumed by the clock and
cache account for a major portion of the total. Hence, the
primary resources that we deal with for power conservation
using basic block strategy are: PC Address calculating unit, I-
Cache and the Fetch Unit.

Fig.1 Power Distribution for Compress

0
5

10
15
20
25
30
35
40

re
na

m
e_

po
w

er

bp
re

d_
po

w
er

w
in

do
w

_p
ow

er

ls
q_

po
w

er

in
t_

re
gf

ile
_p

ow
er

fp
_r

eg
fil

e_
po

w
er

ic
ac

he
_p

ow
er

dc
ac

he
_p

ow
er

dc
ac

he
2_

po
w

er

al
u_

po
w

er

re
su

ltb
us

_p
ow

er

cl
oc

k_
po

w
er

Resource_power

%
 o

f T
ot

al
 P

ow
er

Power saving is done by two methods:

1. Reducing the power consumption of unused units
2. Reducing the execution time without increasing

power consumption

The PC Address Calculating unit, I-Cache and functional
units are modified following the first method, the fetch unit
modification is based on the second method.

PC Address Calculation

In existing architectures, the PC is incremented for every
instruction. In our architecture, the basic block is the primary
unit and hence we propose to increment the PC only once per
block. This is justified by the fact that there is no change of
control flow within a basic block, and on entry, the sequence
of instructions in that basic block is always executed.
Individual instructions need not be kept track of, as the
exception handling mechanism is also handled in a block-
precise manner.

Each basic block is annotated with the number of instructions
in it and using this information, the PC is updated. The PC
Register and its address calculating components can be clock-
gated when they are not used. Hence, we effectively reduce
the power associated with the increment of PC. The amount
of power saved is proportional to the number of instructions
within each basic block. On an average, there are 5-6
instructions per basic block. Since the PC is updated only
once per basic block and the unit is clock-gated for the
remaining period, we get a 60 %–80% reduction in power
necessary for PC calculation unit.

I-Cache

The authors of DBEC [4] have reduced power consumption
in the I-Cache by switching off dead blocks as a whole. They
handle only two extreme cases wherein the block is either
alive or dead irrespective of its temporal locality. The
shortcomings of this technique are exposed when there is a
loop consisting of a large number of basic blocks. All the
blocks are kept alive until the termination of the loop. To
overcome this, we propose an enhancement in which those
blocks that are not going to be used in the “near future” are
kept in a standby mode by clock-gating. We handle this by
associating a Block Dormant Counter (BDC) with each block
in the cache. Once a certain threshold (determined by
profiling) is reached, the corresponding cache lines are clock-
gated, provided the neighboring block does not share the
same cache line.

Functional Units

We propose to select only those functional units that are
required for a basic block and clock-gate the rest that are not
going to be used in the near future. Only when the functional
units are necessary, i.e. during the issue stage, are they
returned to active state. This method effectively saves power
in the execution stage of the pipeline. The functional units are
not immediately returned to the clock-gated pool once they
are released. They remain in an active state for a stand by
period, before being clock-gated. This will ensure that the
switching on and off logic is minimized if the mix of
instructions requires similar functional blocks.

Fetch Queue Modification

We suggest two modes of operation – Mode 1 and Mode 2,
for the fetch unit. We keep track of the misprediction rate by
having a threshold value. When the misprediction rate
increases beyond the threshold value we switch to Mode 2
and switch back to Mode 1, if it drops below the threshold.

Mode 1:
This is the default mode. As long as the misprediction rate is
less than the threshold value the fetch queue logic does not
change.

Mode 2:
In this mode, the fetch unit is modified to be a double-ended
queue. The blocks are fetched from both the taken and not
taken paths of execution [7]. The blocks in the predicted path
are appended to one end of the queue while the first block on
the alternate path is put at the other end of the queue. In the
case of a branch misprediction, the currently used end of the
queue can be flushed and the fetch can proceed from the
other end of the queue. Thus, this method eliminates the time
wasted in fetching new blocks on branch misprediction and
also the need for NPC register. Thus we intend to reduce the
branch penalty. The extra cycles that would have been
required for the next block to be fetched are eliminated, thus
saving power.

IV. IMPLEMENTATION AND RESULTS

Sim-wattch 1.02 was used to evaluate the power
characteristics of our idea. The modifications proposed in the
I-Cache and Functional units were implemented in the
simulator. The simulator was then run to gather statistics like
individual power usage and average power usage by the
different units. The effect of the enhancements to the PC and
the Fetch unit were derived from the power calculations on
the appropriate power distribution for those units obtained
from the ouput of SimWattch. The total power consumption
was obtained and compared with the power usage of the run
without any improvements.

From the statistics obtained, the total power consumed after
our enhancement to I-Cache and Functional Units, is plotted
against that without the enhancement as shown in Fig.2. It is
found that there is a reduction in power for the benchmarks
considered.

Fig.2. Comparison of Power
(By enhancing I-Cache and FU)

0
10
20
30
40
50
60
70
80
90

Ap
plu

Co
mp
res
s Go

Benchmarks

To
ta

l P
ow

er

Original
Enhanced

From the output of SimWattch, the power saved in the PC
address calculation unit, by incrementing the PC only once
per basic block and the power saved in the fetch unit, by
reducing the number of clock cycles associated with the
branch misprediction, are estimated. The resulting
improvement is included in the total power consumed and the
graph is shown in Fig.3.

Fig.3. Comparison of Power
(Enhancment including estimation)

0
10
20
30
40
50
60
70
80
90

Ap
plu

Co
mp
res
s Go

Benchmarks

 T
ot

al
 P

ow
er

Original
Enhanced

Fig.4 shows the percentage improvement in the total power
consumed for three benchmarks. It can be seen that our
enhancement results in a power reduction of about 21%-26%
with no significant reduction in performance.

Fig.4. Power Reduction Statistics

0

10

20

30

Applu Compress Go

Benchmarks

%
 R

ed
uc

tio
n

in
po

w
er

Benchmark Applu Compress Go

% Power
reduction

25.74 23.62 21.14

V. FUTURE WORK

We aim to employ power reduction techniques for the entire
architecture with virtually no compromise in performance.
The enhancements include designing an architecture that
supports higher-level granularity of basic blocks at all levels
of processing, including the entire pipeline, D-Cache and
Register files.

VI. CONCLUSION

In this paper, we have presented an architecture that uses
basic blocks to reduce the power consumed. An analysis of
the results upon simulation of the idea shows good promise.
The novel idea of using basic blocks instead of individual
instructions can be extended to all processing environments.

REFERENCES

[1] Trevor Mudge: “Power: A First class Design Constraint
for Future Architectures”, IEEE Conference, HiPC, India,
2000, pp 215-224.

[2] Hai Li, Swarup Bhunia, Yiran Chen, T. N. Vijaykumar,
and Kaushik Roy: “Deterministic Clock Gating for
Microprocessor Power Reduction”, ECE Department, Purdue
University

[3] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C.K.
Kim D. Burger, S.W. Keckler, and C.R. Moore. "Exploiting
ILP, TLP, and DLP Using Polymorphism in the TRIPS
Architecture", 30th Annual International Symposium on

Computer Architecture (ISCA), pp. 422-433, June 2003. PDF
http://www.cs.utexas.edu/users/cart/trips

[4] Mohan G. Kabadi, Natarajan Kannan, Palanidaran
Chidambaram, Suriya Narayanan, M. Subramanian, and
Ranjani Parthasarathi, School of Computer Science and
Engineering, Anna University, “Dead-Block Elimination in
Cache: A Mechanism to Reduce I-cache Power Consumption
in High Performance Microprocessors”, HiPC, India, 2002

[5] Alfred V Aho, Ravi Sethi and Je.rey D Ulman:
“Compilers: Principles, Techniques and Tools,” Addison-
Wesley, ISBN : 817-808-046-X, Third Indian Reprint 2000.

[6] Russell, Roberta S. and Taylor III, Bernard W.
Operations Management. “Pareto Analysis: Selecting the
Most Important Changes to Make.” November 2002.
http://www.mindtools.com/pages/article/newTED_01.htm

[7] Fetch bottleneck and Branch penalty reduction using 2
instruction pre-fetch queues Guru Prasadh V.Vnkataramani,
Hemanth Kumar Manoharan, Ranjani Parthasarathi presented
in Poster presentation session in HiPC 2003

Dipak Krishnamani is currently doing B.E. computer
science and engineering at College of Engineering, Anna
University, Chennai, India. His fields of interest include
computer architecture and logical reasoning.

Madhavi Krishnan is currently doing B.E. computer science
and engineering at College of Engineering, Anna University,
Chennai, India. Her fields of interest include computer
architecture, operating systems and compiler technology.

Sriram S is currently doing B.E. computer science and
engineering at College of Engineering, Anna University,
Chennai, India. His fields of interest include computer
architecture, operating systems and human-computer
interaction.

Ranjani Parthasarathi is currently professor of computer
science and engineering at the School of Computer Science
and Engineering, Anna university, Chennai. She received
her Ph.D. degree from the Indian Institute of Technology,
Madras. Her fields of interest include computer architecture
and reconfigurable computing.

	Basic Block Architecture for Power Saving
	
	I. INTRODUCTION

	II. RELATED WORK
	
	
	
	III. OUR PROPOSAL

	PC Address Calculation
	I-Cache
	
	
	
	
	Functional Units

	IV. IMPLEMENTATION AND RESULTS
	V. FUTURE WORK
	VI. CONCLUSION
	
	
	REFERENCES

