An Efficient Technique for Dynamic Slicing of
Concurrent C++ Programs

D. P. Mohapatra, R. Mall, R. Kumar
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Kharagpur - 721302, India
e-mail: {durga, rajib, rkumar}@cse.iitkgp.ernet.in

Abstract

In this paper, we propose a novel dynamic slicing technique for con-
current C++ programs. We introduce the notion of Concurrent Program
Dependence Graph (CPDG). Our dynamic slicing technique uses CPDG
as the intermediate representation and is based on marking and unmark-
ing the edges in the CPDG appropriately as and when the dependencies
arise and cease during run-time. Qur approach eliminates the use of trace
files.

1 Introduction

The concept of a program slice was introduced by Weiser [1]. A static slice
consists of those parts of a program that affect the value of a variable selected
at some program point of interest. The variable along with the program point of
interest is referred to as a slicing criterion. A slicing criterion < s,V > specifies
a location s and a set of variables (V). A dynamic slice contains only those
statements that actually affect the value of a variable at a program point for
a given execution. Dynamic slices are smaller than static slices and have been
found to be useful in debugging, testing and maintenance etc. [1, 2].

Many of the real life OOPs are concurrent. Generally, understanding and
debugging of concurrent OOPs are much harder compared to those of sequen-
tial programs. An increasing number of resources are being spent in debugging,
testing and maintaining these products. Slicing techniques promise to come in
handy at this point. But research reports dealing with slicing of concurrent
OOPs are scarce in literature [2]. Although researchers have extended the con-
cept of program slicing to static slicing of concurrent OOPs, the dynamic slicing
of concurrent OOPs is still being missing until now.

Efficiency is especially an important concern for slicing concurrent OOPs,
since their size is often large. With this motivation, in this paper we propose



a novel dynamic slicing algorithm for computing slices of concurrent C++ pro-
grams. Only the concurrency issues in C++ are of concern, many sequential
Object-Oriented features are not discussed in this paper. The representation
for O-O features given by Larson and Harrold [3], can be used in our algo-
rithm. We have named our algorithm edge-marking dynamic slicing (EMDS)
algorithm. Our algorithm allows to completely eliminate the use of a trace file
at run time to record the execution history.

The rest of the paper is organized as follows. In section 2, we present some
basic concepts and definitions. In section 3, we discuss the intermediate program
representation: concurrent program dependence graph (CPDG). In section 4, we
present our edge-marking dynamic slicing (EMDS) algorithm. In section 5, we
compare our algorithm with related algorithms. Section 6 concludes the paper.

2 Basic Concepts and Definitions

Definition 1. Concurrent Control Flow Graph (CCFG). A concurrent con-
trol flow graph (CCFG) G of a program P is a directed graph (N, E, Start,
Stop), where each node n € N represents a statement of P, while each edge e
€ E represents potential control transfer among the nodes. Nodes Start and
Stop are unique nodes representing entry and exit of P respectively. There is
a directed edge from node a to node b if control may flow from node a to node b.

Definition 2. Concurrent Program Dependence Graph (CPDG). A concurrent
program dependence graph (CPDG) G¢ of a concurrent OOP P is a directed
graph (N¢, E¢) where each node n € N¢ represents a statement in P. For z, y
€ N¢, (y,x) € E¢ iff one of the following holds:

(i) y is control dependent on z. Such an edge is called a control dependence edge.
(ii) y is data dependent on z. Such an edge is called a data dependence edge.
(iii) y is fork dependent on z. Such an edge is called a fork dependence edge.
(iv) y is communication dependent on z. Such an edge is called a communication

ependence edge.

3 Construction of the CPDG

We have named our intermediate representation as Concurrent Program Depen-
dence Graph (CPDG). This representation is later used to compute dynamic
slices of concurrent object-oriented programs.

A CPDG of a concurrent OOP captures the program dependencies that
can be determined statically as well as that may exist at run-time. Control
dependency can be determined statically at compile time. The dependencies
which dynamically arise at run-time are data dependencies, fork dependencies
and communication dependencies. A CPDG can contain the following types
of nodes: (i) definition (assignment) (ii) use (iii) predicate (iv) fork (v) send



shared int b;
main()
{
int a;
message msg;

cin>> a;
cin>> b;
while(a > 0) {
b=b-a
a=a-1;

if (fork(!=0) {
b=2;

a=b+1;
msgsnd(1, msg); }

OGS gL

else {
10. a=5;
11. b=a-b;
12. msgrev(l, msg); }
13. cout<< "Value of a is" << a;
14. cout<< "Value of b is" << b;

)

Figure 1: An Example Program

and (vi) receive. Also, to represent different dependencies that can exist in a
concurrent program, a CPDG may contain the following types of edges: (i) con-
trol dependence edge (i) data dependence edge (iii) fork dependence edge and
(iv) communication dependence edge. Fig. 2 shows the CPDG of the concurrent
C++ program given in Fig. 1.

4 EMDS Algorithm

Before execution of a concurrent C++ program P, its CCFG and CPDG are con-
structed statically. During execution of the program P, we mark an edge when
its associated dependence exists, and unmark when its associated dependence
ceases to exist. We consider data dependence edges, fork dependence edges and
communication dependence edges for marking and unmarking.

During execution of the program P, let Dynamic_Slice (p, u, var) with re-
spect to the slicing criterion < p, u,var > denotes the dynamic slice with respect
to the most recent execution of the node u in process p. Let (u,z1),-.., (u,Zg)
be all the marked outgoing dependence edges of u in the updated CPDG after
an execution of the statement u. Then, it is clear that the dynamic slice with
respect to the present execution of the node u, for variable var is given by
Dynamic_Slice(p, u, var) ={((p, z1), - - ., (p, 2x)) } U Dynamic_Slice(p, x1,var)U
... U Dynamic_Slice(p, zx,var).

Let var_1, var_2, ..., var_k be all the variables used or defined at statement
u in the process p. Then, we define dynamic slice of the whole statement « as
dyn_slice(p, u) =Dynamic_Slice(p,u,var_1) U Dynamic_Slice(p, u,var_2)
U...U Dynamic-Slice(p,u,var_k).

Our slicing algorithm operates in three main stages. In the first stage the
CCFG is constructed from a static analysis of the source code. Also, in this
stage using the CCFG the static CPDG is constructed. The stage 2 of the algo-
rithm executes at run-time and is responsible for maintaining the CPDG as the



execution proceeds. The maintenance of the CPDG at run-time involves mark-
ing and unmarking the different dependencies such as data dependencies, fork
dependencies and communication dependencies, as they arise and cease. The
stage 3 is responsible for computing the dynamic slices for a given slicing crite-
rion using the latest CPDG. Once a slicing criterion is specified, the dynamic
slicing algorithm computes the dynamic slice with respect to any given slicing
criterion by looking up the corresponding Dynamic_Slice computed during run
time.

Working of the EMDS Algorithm

Consider the example program of Fig. 1. The CPDG is given in Fig. 2. Let the
process ID for the start process of Fig. 1 be p;. For the input values a=3 and
b=1, we explain how our algorithm computes the slice. A fork call is executed
at statement 6 in p;. Process p; (parent) forks a new process po (child) after
execution of statement 6. So the statements (numbered from 7 to 14) executed
after statement 6 would have fork dependence on statement 6 in p;.

We are interested to compute the dynamic slice for the slicing criterion
< p1,14,b >. The updated CPDG of the program is shown in Fig. 2. We first
unmark all the edges of the CPDG and set dslice(p, u) =¢ for every node u of
the CPDG. In the example program of Fig. 1 since variable b is a shared variable
it can be updated by either of the processes p; or ps. Assuming that the most
recent update of the shared variable b was done by process p» at statement 11,
we compute the dynamic slice. At node 14, the outgoing fork dependence edge
(14, 6) and data dependence edge (14, 11) are shown as marked. Therefore, the
dynamic slice for the slicing criterion < p1,14,b > is computed at stage 3 of the

a‘lgorithm as {(p17 6)7 (p17 7)7 (p27 10)7 (p27 11)}

DataDependence Edge
>
Control Dependence Edge

Fork Dependence Edge

,,,,,,,,,,,, >
Communication Dependence Edgd

- '
Sel Tl |
A
Marked Edge \®

Figure 2: The updated CPDG of Fig. 1



5 Comparison With Related Works

Zhao computed the static slice of a concurrent OOP based on the multi-threaded
dependence graph (MDG) [2]. He did not take into account that dependences
between concurrently executed statements are not transitive. So, the resulting
slice is not precise. Again, he has not addressed the dynamic aspects. Since our
algorithm marks an edge only when the dependence exists, so this transitivity
problem does not arise at all. So, the resulting slice is precise.

Krinke introduced an algorithm to get more precise slices of concurrent
OOPs [4]. She had handled the transitivity problem carefully. So, in her al-
gorithm, the interface dependence is not transitive. But she has not considered
the dynamic aspects.

6 Conclusion

We have proposed a novel algorithm for dynamic slicing of concurrent C++ pro-
grams. We have named this algorithm edge-marking dynamic slicing (EMDS)
algorithm. It is based on marking and unmarking the edges of the CPDG as
and when the dependences arise and cease at run-time. Qur algorithm does
not use trace files to store the execution history. Our algorithm does not re-
quire to create additional nodes during run-time. This saves the expensive file
I/O and node creation steps. Our technique can easily be adapted to other
object-oriented languages such as Java.

References

[1] M. Weiser. Programmers use slices when debugging. Communications of
the ACM, 25(7):446-452, 1982.

[2] J. Zhao. Slicing concurrent java programs. In Proceedings of the Tth IEEE
International Workshop on ProgramComprehension, May 1999.

[3] L. D. Larson and M. J. Harrold. Slicing object-oriented software. In Proceed-
ings of the 18th International Conference on Software Engineering, German,
March 1996.

[4] J. Krinke. Static slicing of threaded programs. ACM SIGPLAN Notices,
33:35-42, April 1998.



