
1

Design Representation And Transformation For High Level
Synthesis In Resource Constrained System

M. Sangeetha1 C. Tharini2 J. Raja Paul Perinbam3

1&3 School of Electronics and Communication Engineering , College of Engineering , Anna
University, India
2 Electronics and Communication Engineering Department, Crescent Engineering College,
Chennai, India.

Introduction

 High-Level Synthesis is the process of mapping a behavioral description at the
algorithmic level to a structural description in terms of functional units,
memory elements and interconnections (e.g. multiplexers and buses). The
intermediate format for High-level synthesis can be represented in Control Data
Flow Graph (CDFG), Data Flow Graph (DFG), Control Flow Graph (CFG), Finite
State Machine (FSM), Finite State Machine using Data path (FSMD) or
Codesign Finite State Machine (CFSM). The primary goal is to suggest a new
theoretical approach to Hardware/Software codesign partitioning and
scheduling for a Resource-Constrained System. The approach is based on
data path for CDFG model that capture the design information from the source
file specified by VHDL language from its equivalent separate Control Flow
Graph and Data Flow Graph. This paper discusses helpful optimization method
for HW/SW partitioning and High-Level Synthesis tools.

Design Methodology For High Level Synthesis

 Main steps involved in the high level synthesis of a digital system are:

 Description of the behavior of the system.
 Translation of the description into a graph (eg. CDFG)
 Partitioning the system behavior into Hardware and Software
 Module
 Operation scheduling. Here each operation in the Graph is
 assigned to a control step.
 Allocate the resources for the digital system. Here the

resources can be function units assigned to execute operation
derived from the graph CDFG.

 In most methodologies, this RTL network is then submitted to logic synthesis

for gate level optimization that attempts to produce a design satisfying certain
area and delay constraints. Clearly, the quality of the final result depends on
the quality of the two tools.

2

 In order to produce an efficient RTL network, HLS has to estimate or
compute the effect that a given high-level algorithmic decision will have on the
final gate level network. This effect is translated into costs, which are used in
most HLS algorithms, such as scheduling, allocation, and resource sharing.

 In most Scheduling/allocation algorithms, the costs are usually based on the
number of states and number of resources. These metrics give a rough
indication of the complexity and performance of the finite state machine (FSM)
and data path area of the final design.

 A system is described in VHDL and transformed using CDFG. The CDFG is
represented using FSMD to calculate the delay constraints for the system
design. The next level involves the partitioning of the system into Hardware
(HW) and Software model.

 Often used model can be partitioned as Hardware model and control
unit can be designed as Software model and verified for its functionality
and specification after scheduling. However, they almost completely ignore
important aspects such as the size and delay of the control logic.

 The scheduling step and the hardware allocation are two important
subtasks. These subtasks are not independent. To obtain an optimal design a
system should perform both subtasks simultaneously. But many systems
perform them separately or apply iteration

 Control Data Flow Graph

 Represents the specification of the design at a very different level than the
 final hardware implementation.

 Nodes representing hardware operators such as adders and subtractors
 It usually does not contain any explicit specification of the multiplexers and

Figure 1 HW/SW Synthesis model

3

 control logic required by the implementation.
 An edge (or a node) in the CDFG is used to represent a value, but in hardware this value

may become a simple net or a register, depending on the schedule.

 Adder node in the CDFG

 may be mapped onto an adder or functional unit in the RTL
network, which in turn may be expanded into gates by logic synthesis
and optimized with the surrounding logic. Hence, it might be inaccurate
to consider simply the area and delay of an adder.

 Final implementation (and cost) of a given CDFG node/edge is
not really known after HLS or even after logic synthesis, it is very difficult
to measure hardware costs accurately during HLS.

 Main reason is that these costs are computed on a
representation that is closer to the language level than it is to the
hardware level that it is trying to measure.

 HLS and logic synthesis operate on different representations

 makes it very inefficient for the two domains to interact.
 In today's systems this would require HLS to finish synthesis

completely, and then logic synthesis would process the controller in the
RTL network. This is a time consuming and inefficient approach.

 If the two tools could operate on the same internal representation
this problem would be resolved.

 DFGs exist in many different forms.

 Scheduling, it would help to know the exact size and delay of the resulting
optimized control logic.

Graphical Representation of System

 CDFG generated for a simple system in VHDL as shown in the Figure 2,
which consists of separate control­flow and data­flow graphs.

 The control­flow graph (CFG) in the Figure 3 represents the sequencing of
operations as described in the language specification.

 The data­flow graph (DFG) in the Figure 4 represents the data­dependencies
among the operations and values.

 The numbers within round in Figure 4 represents the lines of
execution in the source file and the number with # represents the value
assignment in the particular node.

 Node A and Node B deals with data operations and value assignment.

4

 The data path for CDFG model is designed using adders, multiplexers
and demultiplexer from separate Control Flow Graph and Data Flow
Graph as shown in figure 5.

 To optimize the logic it is further partitioned and scheduled using
algorithms.

library ieee; use ieee.std_logic_1164.all;
Entity simple is
Port (clock : in std_logic;
in1, in2, m1 : in integer range 0 to 3;
m2 : in Boolean;
out1, out2, out3, out4 : out integer range 0 to 3) ;
end simple;

Architecture behavior of simple is
Begin
Process (clock)
Variable A,B : integer range 0 to 3;
 Begin
if (clock 'event and clock = '1') then
B := 0; -- 00
 Case (m1) is -- 01
 When 0 => B:= in1 + in2; -- 02

A := A + B ; -- 03
 When 1 => B:= 3; -- 04
 When 2 => A:= in2; -- 05
 When 3 => A := 3; -- 06
 B := 2; -- 07
 End case; -- 08
Out1 <= A; -- 09

if (m2) then -- 10
 b := in1; -- 11

Else out2 <= B; -- 12
Out3 <= A + in1; -- 13

End if; -- 14
Out4 <= A+B; -- 15

end if;
End process; -- 16
End behavior;

Figure 2 A simple system in VHDL

15

14

11

13

12
10

9

0

7

1

8
3

6 5 4 2

0

Figure 3 Control Flow Graph

Figure 4 Data Flow Graph representation

1 10

m1 m2

out4 out3out2 out1

0 2 3

AB

116574

1391512

#0 #3

in2

#3

in2

#2

11 1010

m1m1 m2m2

out4out4 out3out3out2out2 out1out1

00 22 33

AABB

111166557744

13139915151212

#0#0 #3#3

in2in2

#3#3

in2in2

#2#2

5

Clique Partitioning

 This partitioning can be applied to almost any subproblem of the task
assignment task.

 The probem of finding the clique partitioning of a graph is NP complete.
 Super Vertex

 It is based on combining vertices in the compatibility graph step by
step. The vertices are called super vertices.

 The index i of a supervertex vi represents the set of indices of the
vertices from which the supervertex was formed. For example, combining
vertices v1 ,v2 and v3 gives a supervertex v. The intermediate graph after
k steps of the algorithm is called Gck(Vck, Eck), the initial graph
Gc0(Vc0,Ec0), is equal to the compatibility graph.

 Role of Super Vertex
The algorithm looks for a pair of supervertices with the largest number

of common neighbors. A supervertex vn ? Vck is a common neighbor of the
supervertices vi , vj ? Vck, if both edges (vi , vn) and (vj , vn).

 The two supervertices are combined into a new supervertex as
described in the pseudocode of figure 6. The new supervertex remains
connected to the common neighbors only.

 The algorithm goes on to combine are included in Eck supervertices
until the graph Gck(Vck, Eck) has an empty edge set.

Figure 5 Data path for Control Data

m1 m2

+

+ out2

B

A

2 3

In1 in2

in1in2

out3out4 out1

m1 m2m1 m2

++

++ out2

B

A

2 3

In1 in2

in1in2

out3out4 out1

Figure 6 A heuristic to compute the clique
partitioning of a graph

6

 Clique partitioning can be used for both nonoverlapped and overlapped
scheduling.

Mobility based Scheduling

 In ASAP (“as soon as possible “) scheduling computes the earliest time at
which an operation can be scheduled

 ALAP (“as late as possible”) can also be computed by adapting the longest
path algorithm to work from the outputs backwards.

 Combining the information obtained in bothways of scheduling algorithm
gives rise to more powerful heuristics.

 ASAP scheduling time of node vi is denoted by sS(vi) and the ALAP time by
sL(vi), the interval [sS(vi), sL(vi)] contains all possible time instants at which vi
can be scheduled. This interval is called the time frame or the scheduling
range of operation.

 The length of the interval, i.e. sL(vi) sS(vi), is called the operation’s mobility. A
simple pseudocode for mobility based scheduling is described in the figure 7.

Conclusion

A modified data path for CDFG model is designed for HW/SW codesign, which
represents the RTL network in graphical level representation. It is partitioned
and scheduled to obtain optimized logic. The pseudocode described for the
clique partitioning and scheduling algorithm elaborated leads to a more exact
approach to the optimization of any resource-constrained system. Future work
includes researches on generating CDFG model from C source file. Partitioning
and Scheduling of the system is applied to the Control Data Flow Graph to
generate optimized Hardware and Software model.

“determine ? (0) by computing sS and sL ”;
k 0;

while (“ there are unscheduled operations”)
{
“schedule v at some time that optimizes the current
resource utilization”;
“determine ? (k+1) by updating the scheduling ranges of
the unscheduled nodes”;
k k + 1
}
Figure 7 A simple mobility based scheduling
algorithm

“determine ? (0) by computing sS and sL ”;
k 0;

while (“ there are unscheduled operations”)
{
“schedule v at some time that optimizes the current
resource utilization”;
“determine ? (k+1) by updating the scheduling ranges of
the unscheduled nodes”;
k k + 1
}
Figure 7 A simple mobility based scheduling
algorithm

7

References:

1. Ohm, S.Y, Blough, D.M. Kurdahi, F.J 1996. High-level synthesis of recoverable
microarchitectures. In Proceedings of the European Design and Test Conference
(ED&TC 96), 11-14.

2. Qingsheng Wang, Hongxi Xue, Ming Su, Jinian Bian 1995. Behavioral description in

VisualVHDL and its implementation.In proceedings of the International Conference on
Oct. 1995, 361 -363 .

3. Qiang Wu, Yunfeng Wang, Jinian Bian, Weimin Wu, Hongxi Xue 2002. A hierarchical

CDFG as intermediate representation for hardware/software codesign. In Proceedings of
the International 1666 -1669 conference on Communications, Circuits and Systems and
West Sino Expositions, 1429 -1432 vol.2.

4. Euiseok Kim, Jeong-Gun Lee, Dong-Ik Lee 1993. Building a distributed asynchronous

control unit through automatic derivation of hierarchically decomposed AFSMs from a
CDFG. In Proceeding of the International Conference on Advanced research in VLSI
(ARVLSI 2001), 2 –15.

5. Said Amellal and Bozena Kaminska 1993. Scheduling of a Control and Data Flow Graph.

In Proceeding of the International Symposium on Circuits and systems, (ISCAS’93),
1666 –1669.

6. Potkonjak, M. Dey, S. Roy, R.K 1995. Behavioral synthesis of area-efficient testable

designs using interaction between hardware sharing and partial scan. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on , Volume: 14
Issue:9,1141 –1154.

7. Sabih.H. Gerez, eds. 1998. Algorithms for VLSI design Automation. Reading, . John

Wiley & Sons.

8. Knudsen, P.V., Madsen. J. 1999. Graph based communication analysis for
hardware/software codesign. In the (CODES '99) Proceedings of the Seventh
International Workshop on Hardware/software Codesign, 3-5 May 1999, 131 –135.

9. Lei Tang, Shaojun Wei, Yunlin Qiu. 2001. Sub-graph matching based HW/SW co-design

In the Proceedings of fourth International Conference on ASIC, 75 –78.

10. Raje,S.;Sarrafzadeh,M.1993.GEM:A geometric Algorithm for scheduling. In the IEEE
International Symposium(ISCAS '93) on Circuits and Systems , 3-6 .

11. Wayne Wolf , eds. 2001. Computers as Components: Principles of Embedded Computing

System Design. Reading,.Harcourt India Private Limited.

