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Introduction 

 High-Level Synthesis is the process of mapping a behavioral description at the 
algorithmic level to a structural description in terms of functional units, 
memory elements and interconnections (e.g. multiplexers and buses). The 
intermediate format for High-level synthesis can be represented in Control Data 
Flow Graph (CDFG), Data Flow Graph (DFG), Control Flow Graph (CFG), Finite 
State Machine (FSM), Finite State Machine using Data path (FSMD) or 
Codesign Finite State Machine (CFSM). The primary goal is to suggest a new 
theoretical approach to Hardware/Software codesign partitioning and 
scheduling for a Resource-Constrained System. The approach is based on 
data path for CDFG model that capture the design information from the source 
file specified by VHDL language from its equivalent separate Control Flow 
Graph and Data Flow Graph. This paper discusses helpful optimization method 
for HW/SW partitioning and High-Level Synthesis tools.  
 

Design Methodology For High Level Synthesis   

 Main steps involved in the high level synthesis of a digital system are: 

  Description of the behavior of the system. 
  Translation of the description into a graph (eg. CDFG) 
  Partitioning the system behavior into Hardware and Software 
  Module 
  Operation scheduling. Here each operation in the Graph is           
          assigned to a control  step. 
  Allocate the resources for the digital system. Here the  

resources can be function  units assigned to execute operation 
derived from the graph CDFG. 

 
 In most methodologies, this RTL network is then submitted to logic synthesis 

for gate level optimization that attempts to produce a design satisfying certain 
area and delay constraints. Clearly, the quality of the final result depends on 
the quality of the two tools. 
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 In order to produce an efficient RTL network, HLS has to estimate or 
compute the effect that a given high-level algorithmic decision will have on the 
final gate level network. This effect is translated into costs, which are used in 
most HLS algorithms, such as scheduling, allocation, and resource sharing. 

 In most Scheduling/allocation algorithms, the costs are usually based on the 
number of states and number of resources. These metrics give a rough 
indication of the complexity and performance of the finite state machine (FSM) 
and data path area of the final design.  

 A system is described in VHDL and transformed using CDFG. The CDFG is 
represented using FSMD to calculate the delay constraints for the system 
design. The next level involves the partitioning of the system into Hardware 
(HW) and Software model. 

 Often used model can be partitioned as Hardware model and control 
unit can be designed  as Software model and verified for its functionality 
and specification after scheduling.  However, they almost completely ignore 
important aspects such as the size and delay of the control logic.  

 The scheduling step and the hardware allocation are two important 
subtasks. These subtasks are not independent. To obtain an optimal design a 
system should perform both subtasks simultaneously. But many systems 
perform them separately or apply iteration 
  

  

 

 

 

 

 

 Control Data Flow Graph 

 Represents the specification of the design at a very different level than the   
   final hardware implementation.  

 Nodes representing hardware operators such as adders and subtractors 
 It usually does not contain any explicit specification of the multiplexers and   

Figure 1 HW/SW Synthesis model 
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   control logic required by the implementation.  
 An edge (or a node) in the CDFG is used to represent a value, but in hardware this value 

may become a simple net or a register, depending on the schedule.  

 Adder node in the CDFG  

   may be mapped onto an adder or functional unit in the RTL 
network, which in turn may be expanded into gates by logic synthesis 
and optimized with the surrounding logic. Hence, it might be inaccurate 
to consider simply the area and delay of an adder. 

   Final implementation (and cost) of a given CDFG node/edge is 
not really known after HLS or even after logic synthesis, it is very difficult 
to measure hardware costs accurately during HLS.  

   Main reason is that these costs are computed on a 
representation that is closer to the language level than it is to the 
hardware level that it is trying to measure. 

 HLS and logic synthesis operate on different representations  

  makes it very inefficient for the two domains to interact.  
 In today's systems this would require HLS to finish synthesis   

completely, and then logic synthesis would process the controller in the 
RTL network. This is a time consuming and inefficient approach.  

 If the two tools could operate on the same internal representation 
this problem would be resolved.  

  DFGs exist in many different forms.  
  

 Scheduling, it would help to know the exact size and delay of the resulting 
optimized control logic. 

Graphical Representation of System 

 CDFG generated for a simple system in VHDL as shown in the Figure 2,  
which consists of separate control­flow and data­flow graphs.  

 The control­flow graph (CFG) in the Figure 3 represents the sequencing of 
operations as described in the language specification.  

 The data­flow graph (DFG) in the Figure 4 represents the data­dependencies 
among the operations and values.  

 The numbers within round in Figure 4 represents the lines of 
execution in the source file and the number with # represents the value 
assignment in the particular node.  

 Node A and Node B deals with data operations and value assignment.   
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 The data path for CDFG model is designed using adders, multiplexers 
and demultiplexer from separate Control Flow Graph and Data Flow 
Graph as shown in figure 5.  

 To optimize the logic it is further partitioned and scheduled using 
algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

library ieee; use ieee.std_logic_1164.all;
Entity simple is
Port ( clock  : in std_logic;
in1, in2, m1 : in integer range 0 to 3;
m2 : in Boolean;
out1, out2, out3, out4 : out integer range 0 to 3 ) ;
end simple;

Architecture behavior of simple is
Begin
Process (clock)
Variable A,B : integer range 0 to 3;
  Begin
if (clock 'event and clock = '1') then
B := 0;                         -- 00
     Case (m1) is                         -- 01
     When 0 =>  B:= in1 + in2;             -- 02

A := A + B ;                         -- 03
     When 1 => B:= 3;                   -- 04
     When 2 => A:= in2;                   -- 05
     When 3 => A := 3;             -- 06
            B := 2;                   -- 07
     End case;                                              -- 08
Out1 <= A;                               -- 09

if  (m2) then                         -- 10
 b := in1;                        -- 11

Else out2 <= B;                        -- 12
Out3 <= A + in1;                                              -- 13

End if;                        -- 14
Out4 <= A+B;                 -- 15

end if;
End process;                       -- 16
End behavior;

Figure 2 A simple system in VHDL 
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Figure 3 Control Flow Graph 

Figure 4 Data Flow Graph representation 
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Clique Partitioning 

 This partitioning can be applied to almost any subproblem of the task 
assignment task.  

 The probem of finding the clique partitioning of a graph is NP complete.  
 Super Vertex 

 It is based on combining  vertices in the compatibility graph step by 
step. The vertices are called super vertices.  

 The index i of a supervertex vi represents the set of indices of the 
vertices from which the supervertex was formed. For example, combining 
vertices v1 ,v2 and v3 gives a supervertex v. The intermediate graph after 
k steps of the algorithm is called Gck(Vck, Eck ), the initial graph 
Gc0(Vc0,Ec0 ), is equal to the compatibility graph.  

 Role of Super Vertex 
The algorithm looks for a pair of supervertices with the largest number 

of common neighbors. A supervertex vn ?  Vck is a common neighbor of the 
supervertices vi , vj ?  Vck, if both edges (vi , vn ) and (vj , vn). 

 The two supervertices are combined into a new supervertex as 
described in the pseudocode of figure 6. The new supervertex remains 
connected to the common neighbors only.  

 The algorithm goes on to combine are included in Eck supervertices 
until the graph  Gck(Vck, Eck ) has an empty edge set.  

Figure 5 Data path for Control Data 
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Figure 6 A heuristic to compute the clique 
partitioning of a graph 
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 Clique partitioning can be used for both nonoverlapped and overlapped 
scheduling. 

Mobility based Scheduling  

 In  ASAP ( “as soon as possible “) scheduling computes the earliest time at 
which an operation can be scheduled  

 ALAP ( “as late as possible”) can also be computed by adapting the longest 
path algorithm to work from the outputs backwards. 

 Combining the information obtained in bothways of scheduling algorithm 
gives rise to more powerful heuristics. 

 ASAP scheduling time of node vi is denoted by sS(vi) and the ALAP time by 
sL(vi), the interval [sS(vi), sL(vi)] contains all possible time instants at which  vi 
can be scheduled. This interval is called the time frame or the scheduling 
range of operation. 

 The length of the interval, i.e. sL(vi)  sS(vi), is called the operation’s mobility. A 
simple pseudocode for mobility based scheduling is described in the figure 7. 

Conclusion 

A modified data path for CDFG model is designed for HW/SW codesign, which 
represents the RTL network in graphical level representation. It is partitioned 
and scheduled to obtain optimized logic. The  pseudocode described for the 
clique partitioning and scheduling algorithm elaborated leads to a more exact 
approach to the optimization of any resource-constrained system. Future work 
includes researches on generating CDFG model from C source file. Partitioning 
and Scheduling of the system is applied to the Control Data Flow Graph to 
generate optimized Hardware and Software model. 

“determine ? (0) by computing sS and sL ”;
k        0;

while ( “ there are unscheduled operations”)
{
“schedule v at some time that optimizes the current 
resource utilization”;
“determine ? (k+1) by updating the scheduling ranges of 
the unscheduled nodes”;
k         k + 1
}
Figure 7 A simple mobility based scheduling 
algorithm
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while ( “ there are unscheduled operations”)
{
“schedule v at some time that optimizes the current 
resource utilization”;
“determine ? (k+1) by updating the scheduling ranges of 
the unscheduled nodes”;
k         k + 1
}
Figure 7 A simple mobility based scheduling 
algorithm
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