
Soft Enforcement of Access Control Policies in
Distributed Environments

Vipul Goyal

Department of Computer Science & Engineering
Institute of Technology

 Banaras Hindu University
Varanasi, India

vipulg@cpan.org

Abstract. We briefly consider the issue of access control in
highly decentralized structures with one additional concept
called entitlement. Entitlement to access a resource means not
only that the access is permitted but also that the controller of the
resource is obliged to grant the access when it is requested. Since
there is no central system designer/administrator, there is no
guarantee that policies will be properly implemented by all
components of the system. The resource provider may refuse to
grant access to a resource even when the seeker is entitled to it.
We propose a technique to detect such policy violations by the
resource providers and consequently take countermeasures
against such practices.

1 Introduction

Recent years have seen an emergence of computing technologies with highly
decentralized structures, such as Peer-to-Peer, Grid Computing and Ad-Hoc
Networks. Since the various resources are not under the control of a single
system designer/administrator, enforcing resource access control policies in such
systems is a non-trivial task.
 This issue was raised by Firozabadi et al in their recent paper [FS02b]. They
argued that the traditional access control models are not sufficient in such
environments and concluded that there is a need to devise mechanisms for the
soft enforcement of access control policies in these systems. We provide a brief
introduction to the problem described in [FS02b].

 Existing access control models are originally designed for distributed
applications operating on client-server architectures. A basic assumption for
these models is that there is a centrally supervised management of the entire
system such that access policies will be updated and enforced as they are
prescribed. For example, when a new user is introduced then its identity and its

access permissions will be added to the access control lists of the provided
services. Given this assumption, the policy enforcement component is trusted
always to comply with the prescribed policy (unless it develops faults). The
question of what to do when a resource provider deliberately fails to comply with
the system’s policies does not arise.
In contrast, in a system of heterogeneous and independently designed subsystems
this assumption no longer holds. In such systems, a number of individuals and/or
institutions interact in a collaborative environment to create a Virtual Community
(VC), shaped and organized according to a set of rules and policies that define
how its resources can be shared among its members. A VC is also sometimes
called a Virtual Organisation, as in [FKT01].
 In a VC is there is no centrally controlled enforcement of the community
policies. Consequently, there is no guarantee that community policies will be
followed as they are prescribed: members of a VC may fail to, or choose not to,
comply with the rules of the VC. If there is no way of practical (physical)
enforcement of community policies then it would be useful to have a normative
control mechanism for their soft enforcement. By soft enforcement we mean that
even if VC members are practically able to avoid complying with the community
policies, such behaviour can be detected and they can be subject to sanctioning
and remedial action as the consequence of their behaviour.
 As an example, consider a VC whose members have agreed to share resources
among each other. Suppose a member has joined the community just for a ‘free
ride’, i.e. it happily uses the resources of other community members but denies
access to its own resources whenever requested. The resource seeker will of
course come to know about the violation of community policies by this member
when it is denied access to a resource to which it is entitled, but the question that
remains is how that resource seeker can prove this policy violation to the
community regulator. Clearly, for systems like collaborative grid computing to
be possible, this is an urgent issue which needs to be addressed first. Since, all
the subsystems in the VC are independent and autonomous, they cannot be
prevented from taking any decision about access control; however a mechanism
is needed to enable the resource seeker prove such policy violations by the
subsystem to the community regulator. The community regulator would then take
countermeasures such as termination/temporary suspension of membership of the
violator or impose of fines etc.

2 The proposed solution

2.1 Analysis of the requirements

If the VC just requires the requests/replies to be digitally signed by each member,
this may seem to be able to solve the problem. The resource seeker in this case
receives a digitally signed reply denying access to the requested resource and
hence a proof of policy violation. However, even this policy of digitally signing

the replies cannot be enforced by the community regulator. At an extreme, the
resource controller may just ignore the request and may not send any reply at all.
In this scenario, we assert that no cryptographic technique can solve the problem.
The resource seeker will have the capability to generate a request, however it will
have to prove that it actually sent the request to the resource controller (and no
reply/negative reply was received).
 To achieve this, the only possible way seems to be ‘traffic monitoring’. In the
next sub-section, we describe our technique. We assume support from routers for
traffic monitoring.

2.2 The proposed scheme

Our scheme requires support from routers to cater to a traffic log request for a
specified amount of time. The scheme proceeds as follows-
Step 1: The seeker request the resource but is unlawfully denied the access by
the server; thus it detects a policy violation by the server.
Step 2: The seeker finds out the IP address of the last router in the path from
itself to the server i.e. the router which connects directly to the resource server.
This can be easily done by using the TTL (Time To Live) field in the IP packets
and getting ICMP Time Exceeded messages, documented in RFC 792 (similar to
the working of Traceroute software).
Step 3: The seeker contacts that router and submits a traffic log request. A traffic
log request consist of the following components-
1) The destination IP address
2) Time t1 and t2
 On receiving this request, the router will log to a file all the traffic between the
destination IP address supplied and the sender of the traffic log request starting
from time t1 and ending at time t2.
 The seeker may supply t1 as the current time (actually little less than current
time to take care of possible time difference between itself and the server) and t2
as the expected maximum time for a request/response (e.g. an hour more than t2).
Step 4: The resource seeker sends resource request to the resource server and if it
violates the community policy, the seeker may report to the community regulator
which could then request the appropriate log file from the router to verify the
suspected violation.

 While the traffic log request may seem to place some extra burden on the
routers, we argue that the routers will have to cater to a log request only when
there is a policy violation by a subsystem.
 Note that all routers are not required to support the log requests. Support is
needed only from the routers directly connected to the resource server. We
choose the end router since the routing path of the IP packets between the two
systems may change and hence an intermediate router in the path may not be able
to log the complete traffic.

2.3 The LAN Scenario

If the server and the seeker are on the same LAN and are connected directly,
presumably, there are no routers in the path and hence no traffic monitoring can
be done through routers. In this case the above scheme fails.
 However a similar scheme can be designed in this case taking the advantage of
packet sniffing. For this, there should be a trusted system on the same LAN. The
log requests could then be sent to that trusted system and the system would log
the traffic using a packet sniffer.

2.4 The Privacy of the Communication

Finally, we ask a question about the privacy of the communication “Does the
possibility of the traffic logging by a router threaten the privacy of the
communication between the two parties?”. The answer seems to be “no”. Since
logging is requested by one of the two parties involved in the communication
only, logging cannot disclose any private information. The requesting party may
itself log all the communication if it likes. However, consider a slightly different
scenario, when the community regulator is interested in the communication
between the two parties. In today’s networks, IP address forging is anything but
impossible. Hence, if the community regulator forges the IP address of one of the
parties and submits the log request for the other party to the appropriate router, it
could later obtain the complete log file recording all the communication between
the two parties.
 In our opinion, this threat and its possibility is small enough to neglect in usual
practice rather than introducing expensive cryptographic protocols. However in
environments where privacy is a prime concern and all the communication needs
to be protected from the community regulator, each subsystem could be assigned
a certificate binding its IP address to a public key. The log request to the router
could then be digitally signed to avoid any fake requests.

3 Conclusion

Soft enforcement of policies in highly decentralized environments like peer to
peer, grid computing and ad-hoc networks is a recent issue. The sub-systems
should not be able to make false claims about following the community policy
and any policy violation should be detectable. We first identify that any scheme
for policy violation detection in such environments would require some kind of
traffic monitoring. We then propose a simple and practical solution based on the
concept of traffic log requests. Minimal burden on the end router on the path is
placed since it is required to cater to the traffic log request only when there is a
policy violation by the resource server directly connected to it.

References

[BDF02] Olav Bandmann, Mads Dam, and B. Sadighi Firozabadi. Constrained
Delegations. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 131–140, 2002.

[FKNT02] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of
the grid: An open grid services architecture for distributed systems integration.
http://www.globus.org/research/papers/ogsa.pdf, January 2002.

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the
Grid – Enabling Scalable Virtual Organisations. International Journal of Super-
computer Applications, 15(3), 2001.

[FS02a] B. Sadighi Firozabadi and Marek Sergot. Revocation Schemes for
Delegated Authorities. In Proceedings of the Third International Workshop on
Policies for Distributed Systems and Networks, pages 210–213, Monterey,
California, USA, June 2002. IEEE.

[FS02b] B. Sadighi Firozabadi and M. Sergot. Contractual Access Control. In
proceedings of Security Protocols, 10th International Workshop, Cambridge, UK,
2002

[FSB01] B. Sadighi Firozabadi, M. Sergot, and O. Bandmann. Using Authority
Certificates to Create Management Structures. In Proceedings of the 9th
International Workshop on Security Protocols, Cambridge, UK, 2001..

[PWFK02] L. Pearlman, V. Welch, I. Foster, and C. Kesselman. A Community
Au-thorisation Service for Group Collaboration. In Proceedings of the Third
International Workshop on Policies for Distributed Systems and Networks, pages
50–59, Monterey, California, USA, June 2002. IEEE.

