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Abstract: In a heterogeneous, dynamic environment, like Grid, post-mortem analysis is of no use and data 

needs to be collected and analysed in real time. Novel techniques are also required for dynamically tuning the 

application’s performance and resource brokering in order to maintain the desired QoS. The objective of this paper 

is to propose an integrated framework for performance analysis and tuning of the application, and rescheduling the 

application, if necessary, to some other resources in order to adapt to the changing resource usage scenario in a 

dynamic environment.  

 

1. Introduction 
 

Traditionally, performance monitoring and tuning is a cyclic and feedback guided process – every time it is 

needed to analyse and tune the performance of the application and to send back the application for 

execution. However, unlike traditional architectures, post-mortem analysis is of no use in dynamic 

distributed environments, like Grid. For successful performance analysis in such environments, real time 

performance data needs to be captured. Resource brokering and allocation on the basis of these real-time 

performance data is a major issue in Grid environment. Dynamic policy selection in response to current 

resource availability and application demands is also one of the important requirements. 

 
In this paper, we present an integrated framework for analysis and tuning the application’s execution 

performance and dynamically rescheduling the application in order to adapt with the changing execution 

environment. The framework is a part of a multi-agent system [14] which supports performance-based 

resource allocation for multiple concurrent jobs executing in a Grid environment.   

 

2. Related Work 

 
Several tools for measuring or analyzing performance of serial/parallel programs in distributed 

environment have been developed so far; these include SCALEA [16], Pablo [12], EXPERT [18], etc. 

There are many other existing tools for performance monitoring and analysis in grid environments. In the 

ASKALON project, a set of four tools are involved in performance prediction, analysis, and measurement 

and data collection. SCALEA-G [17] is another tool that is based on the concept of Grid Monitoring 

Architecture (GMA) [15]. It provides an infrastructure for OGSA [4] and supports performance analysis of 

a variety of Grid services including computational resources, networks, and applications. GRM and R-

GMA [10] are used for on-line monitoring of parallel applications running on the grid. These tools collect 

trace information particularly for message passing parallel applications. Pulse [11] is developed within the 

EU DataGrid project as an analysis and presentation tool. Pulse is a framework to compose an analyzing 

chain for grid monitoring data about services or resources. In the Peridot [5] project, distributed 

performance analysis system is composed of a set of analysis agents. The agents at the lowest level in the 

hierarchy are responsible for the collection and analysis of performance data from one or more nodes upon 

request from monitors.  

 

While our work also proposes the use of a hierarchically organized set of analysis agents, a strict 

categorisation of these analysis agents is proposed and the functions of each of these agent categories are 

clearly defined. Moreover, our main focus is on the implementation of an integrated framework in which 

different categories of agents will collaborate not only for performance analysis, but also for using the 

analysis results and thereby improving the performance of the application in real-time. Thus, we integrate 

local tuning agents on each of the grid resources for dynamically changing the application codes. Our 

framework also supports performance-driven job migration in a grid environment.  

 



3. An integrated Agent Framework 

 
The environment which we have selected for implementation of our framework is depicted in Figure 1. In 

this environment [8] Grid resources can be clusters or SMPs or even workstations of dissimilar 

configuration, but all of these are tied together through a grid middleware layer. A Grid site comprises a 

collection of all these local resources, which are geographically located in a single site. All these Grid sites, 

which are mutually agreed to share resources located in several sites form a Global Grid. Global grid is 

responsible for multiple grid resource registries and grid security services through mutually distrustful 

administrative domains.  

 

Figure 1 Grid Environment 

In the above environment, our framework undertakes two different actions for improving the performance 

of a running application. The first action is tuning a part of the application locally, whereas the second 

action is rescheduling the application to a different resource in case the current resource fails to keep its 

promise. The actions are taken either by a Tuning Agent (local tuning) or by a Job Controller and a Job 

Execution Manager Agent (rescheduling) [14] of the agent framework. However, any of these actions are 

taken on the basis of some performance data collected by the Analysis Agents organized in a hierarchy. 

These analysis agents are divided into the following four logical levels of deployment in descending order: 

(1) Grid-level Agent (GA), (2) Grid Site-level Agent (GSA), (3) Resource-level Agent (RA) and (4) Node-

level Agent (NA).  In the following paragraphs, we describe in detail the activities of each type of analysis 

agents and also their interaction with other agents. 

 

Node-level Agents (NA) - Node-level Agents are located at each node, i.e. on a workstation, on an SMP or 

on each node of a cluster. An NA interacts with a performance monitor at the lowest level and collects 

performance data in order to analyse the performance of the node or the execution performance of a job 

running on that node. Thus it can provide information like CPU usage, memory access pattern or even load 

imbalance in case of an SMP. In case the execution performance of a job degrades due to a performance 

problem that can be solved locally, the NA raises a warning message. Immediately a tuning agent is 

invoked (discussed later) for local tuning of the job. For example a resource-crunch job may be allowed to 

use more resources at the run-time or the load-imbalance effect may be reduced by dynamically changing 

the local scheduling strategy.  

 

Resource-level Agents (RA) - These agents seat at the resource level. For example, a cluster requires one 

RA that interacts with all the NAs sitting on the cluster nodes. It gathers performance data from these NAs 

and analyses the overall performance of the cluster. An RA can detect problems like load imbalance in the 

cluster. RAs also interact with the JobExecutionManager Agents(JEM)  and keep them informed about the 

current status of the resource and execution performance of each job running on the resource. Depending 

on this information only, the JobExecutionManager and the JobController Agents may take decisions 

about the migration of any job to any other resources [14]. Individual SMPs and workstations participating 



in a Grid also admit an RA in their environment. These RAs do not require to carry out any performance 

analysis in addition to what is done by the NAs; however they act as intermediaries between the NAs and 

the JEMs and assist the JEMs to take appropriate decisions. 

 

Grid Site-level Agents (GSA) - A GSA keeps track of all the resources in a particular Grid-site. It interacts 

with the RAs and gathers summary reports regarding execution of various jobs on different resource 

providers at the particular site. A GSA is useful to identify any fault in any of the resources and also to 

check whether any of the resources is overloaded. A JobController Agent interacts with the GSAs (at the 

local site or at a remote site) at the time of migration of a job, in order to find the next suitable resource. 

The GSA checks the current loads of all resources that can meet up the requirement of a job, and sends this 

information to the JobController Agent. On the basis of this information, the JobController Agent takes 

decision regarding where to migrate a job. In addition to this, a GSA can proactively inform the 

JobController Agent regarding any fault or any performance problem at a particular resource and, thereby, 

allowing the agent to determine its next course of action. 

 

Grid-level Agents (GA) - A GA does not take part in the execution performance analysis of jobs; rather it 

focuses on the overall health of the Grid. Thus, it analyses information like, whether every resource-owner 

has been successful to keep their promises and whether every job has received the computational services 

as they have been assured for. This analysis is based on the data collected from the GSAs and the 

JobController Agents. Thus each GSA and each JobController Agent must regularly update the GA for this 

analysis. 

 

Figure 2 demonstrates interaction among all the agents participating in the performance analysis and tuning 

process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Agent Interaction Diagram 

 

4. Tuning Scenarios 
 
In this paper two scenarios are presented to demonstrate the use of the proposed framework. Also we 

present the preliminary results of our implementation in this section. 
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Scenario 1 – A parallel code (with OpenMP directives) starts executing using a single thread on a multi-

processor machine and a Node-level Analysis Agent monitors its performance by profiling the code. The 

application code is suitably instrumented to capture a set of events, data regarding the occurrences of events 

are stored in a data buffer and NAs use a pull model for obtaining data from the data buffer. This data is 

then analysed by the NAs in order to discover the occurrence of any performance problem. At this point the 

NA may identify that performance needs to be improved and discovers that performance can be improved 

by creating more threads and actually executing part of the code parallely. Thus the local Tuning agent is 

invoked and the number of threads is increased at run-time. Figure 3(a) shows the performance 

improvement for a test code (for adding two matrices) when number of threads was increased from one to 

two. Further improvement could be observed if we had used more threads for parallel execution of the 

code. 

 

Scenario 2 – A parallel code is executing on a server. The Node-level Analysis Agent discovers that 

desired performance cannot be obtained because of resource limitation on the particular node. A GSA 

which regularly interacts with all the NAs / RAs at a particular site obtains this information from the NA. 

An NA or an RA can also proactively send a message to the GSA indicating a fault or overloading situation 

(thus, we use a pull as well as a push model of data collection). As soon as a GSA recognizes a situation 

where job migration is necessary, it informs the concerned JEM Agents by sending appropriate warning 

messages. The JEM Agent, in order to find a suitable resource, consults the JobController Agent. The 

JobController Agent first checks the resource availability, runs a resource selection algorithm (not within 

the scope of this paper) and advises the JEM Agent regarding its next course of action. The JobController 

Agent queries the GSAs regarding the current status of a set of resources. As the resources may be located 

at different sites, the JobController Agent may need to check with different GSAs in the Grid. GSAs, 

depending upon the information gathered from the NAs / RAs, dynamically decide the status of each 

resource in the set and return this information to the JobController Agent.  

 

Figure 3(b) demonstrates the effect of migration of a simple sorting program (initially scheduled on a two-

processor server, referred to as Server1) to a 16 processor server, referred to as Server2. Although in our 

results we use only four processors on Server2. The performance of the migrated code is compared with the 

performance of an equivalent serial code and the performance of a parallel code that continued to execute 

on Server1. We demonstrate the effect with different data sizes and as we see, every time the performance 

improves quite noticeably. More detailed implementation of this part has been discussed in [14]. 

 

 
Figure 3 (a) Performance Improvement for Matrix Addition Code in Scenario 1 (time is given in seconds), 

(b) Performance Improvement for Sorting Code in Scenario 2 

 

 



Accounting and Auditing 

 

Any performance problem noted by the NAs, RAs and GSAs is communicated to the Grid Agent (GA). 

The lower level agents proactively register this information with the GA. The GA may later use this 

information for accounting and auditing purpose. However, accounting and auditing are different issues and 

our work does not focus on these issues. Therefore, we restrict our discussion in this regard. 

 

5. Conclusion 
 

In this paper, we propose an integrated framework for performance analysis of applications executing on 

large distributed systems and also dynamically improving their execution performances. Interaction and 

exchange of information among the agents for collecting data, analyzing and improving the performance 

have also been discussed. Two usage scenarios of the framework and preliminary results of partial 

implementation of the framework have been described. 
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