
Exploration of the Potential of Cell Architecture
 For MPI Applications

Arun Kumar1, Naresh Jayam1, Ganapathy Senthilkumar1, Murali Krishna1,
Pallav K Baruah1, Ashok Srinivasan3, Shakti Kapoor2, Raghunath Sharma1

1Dept. of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning,
Prashanthi Nilayam, India.

2IBM, Austin.
3Dept. of Computer Science, Florida State University.

Abstract

 The Cell Broadband Engine Architecture
(CBEA) designed by Sony, Toshiba and
IBM is a heterogeneous multi-core
processor. Though aimed at the gaming
industry the Cell processor has a good
potential for scientific computation. Our
work is aimed at analyzing the potential of
the Cell processor for running MPI
(Message Passing Interface) applications.
Our work involves the implementation of
the basic calls of the Message Passing
Interface, study of the bandwidth and
latency of the library. Also we have studied
different models for the implementation of
MPI on the Cell processor. Our initial
experiments have shown encouraging
results.

1. Introduction

 The introduction of multi-core processors
and simultaneous multi-threaded (SMT)
processors has opened up the possibility of
parallel computation on a single chip. The
Cell Broadband Engine Architecture
developed by Sony, Toshiba and IBM is a
move towards providing supercomputing
power on a single chip through a
heterogeneous multi-core processor design.
This new design with eight computation-
intensive cores, each having its own private

high speed memory encourages the idea of
highly parallel applications.
 We explore different approaches for
implementing a Message Passing Interface
library that would enable the large number
of MPI applications that are found in the
scientific community to run on the Cell
processor. The Cell processor has one 64-bit
SMT PowerPC core, the PPE (PowerPC
Processor Element). It acts as the controller
for the eight computationally intensive
SIMD cores called as the Synergistic
Processor Elements (SPEs). Each of the
SPEs has a private memory of size 256KB
called the Local Store (LS). The load and
store instructions of the SPE act on the data
from its own local store. Each SPE has an
associated DMA engine that is used for
moving data between the main memory and
the local store, allowing for overlapping of
computation and communication. The SPEs
can communicate among themselves and
also with the PPE through mailboxes and
signal notification registers. Our work
comprises of implementing a minimal MPI
library that would enable MPI applications
to run on the Cell processor with each SPE
being considered as one MPI node.

2. Related work

 The coming of a heterogeneous multi-
core processor like the Cell processor which

has enormous computational power has
caught the attention of the scientific
community. Work has been done to port a
number of computational kernels like
DGEMM, SGEMM, 1D FFT and 2D FFT to
the Cell processor [1]. Results of the work
have shown the potential of the Cell
processor for scientific computation [1].
Some amount of work has been done in the
direction of developing frameworks that
would enable the programming of Cell at an
abstract level [2, 3, and 4]. Comprehensive
work has been done in the past on the
implementation of MPI library on shared
memory machines [5]. Since the local store
of each of the Synergistic Processor
Elements is too small for most of the
applications, research on developing
compiler and runtime support for running
programs with data and text sizes larger than
the size of the local store is being carried
out [6 , 7]. However, to date, an attempt to
study the potential of Cell for supporting the
large number of existing MPI applications
through the implementation of an MPI
library for Cell processor does not appear in
the literature.

2. Design and Architecture of MPI
on Cell

 We have tried three different approaches
for implementing the MPI library on the
Cell processor. In the first model each MPI
node has two components: one SPE thread
that runs on the SPE core and a pthread
which runs on the PPE and serves the SPE
thread with some of the functionality. In the
second model the PPE is involved only
during the initialization and finalization
phase of the MPI application. All the
computation and communication
functionalities run on the SPE. The third
model is an extension to the second model to
support applications with large data sets and
is implemented in the ‘synchronous’ mode.

Section 2.1 describes the basic
communication architecture. Sections 2.2,
2.3 and 2.4 describe the first, second and
third models respectively.

2.1 Communication Architecture

 Let N be the number of MPI nodes. Our
runtime environment allocates N*(N-1)
buffers, since each node can send messages
to N-1 nodes (a process is not allowed to
send messages to itself in standard mode).
Each buffer is designated to a sender-
receiver pair Pi and Pj. The buffer
corresponding to sender as Pi and receiver as
Pj is different from the buffer corresponding
to Pj as sender and Pi as receiver. All the
buffers corresponding to a sender are
managed by that sender. Figure 1 shows the
communication architecture in detail. The
organization of the message buffers and the
structure of the meta-data entry are shown.
 The sending and receiving processes
communicate information about the
location, tag, and size of the messages
through meta-data stored in buffers
corresponding to each pair. There are
N*(N – 1) buffers used for storing the meta-
data corresponding to each sender- receiver
pair. The buffers containing the meta-data
are organized as an array of entries. The
meta-data buffer is managed in a manner
similar to message queues in the sense that a
new meta-data entry cannot overtake a
previous meta-data entry and is also
searched in a linear fashion to ensure
message ordering. An entry is made by a
sender after copying the message into the
message buffer. The entry contains the
information about the location of the
message within the buffer, the tag associated
with it, the data type and size of the message
and flag bits.
 The location of the buffers and the
functionalities of the PPE and SPEs vary
between the different models. In the first

model the management of the buffer
memory is done by the PPE at the request of
the SPE, whereas in the second and third
models, it is done by the SPEs. Also, the
number of buffers is N*N, in the third
model.

Figure 1: Communication Architecture

2.2 SPE-Centric Single Program
Multiple Data model (Design 1)

 Each MPI node is composed of two
components, one running on the SPE and a
pthread running on the PPE. The point to
point communication calls are implemented
in buffered mode. The application code runs
on the SPE and the pthread corresponding to
each SPE acts as a server performing certain
functionalities related to management of the
message buffers and synchronization
between two SPEs. The SPEs perform all of
the computation and make requests to the
pthread through mailbox messages.

 In this model buffers used by the point to
point communication operations are located
in the SPE local store, since the SPE to SPE
DMA transfers are faster than SPE to main
memory DMA transfers. The send and
receive operations are as described in the
section 2.1. This model has the advantage of
high speed message transfers since on-chip
DMAs are faster. But the mailbox
communication between the SPE and PPE is
slow and the functionalities provided by the
PPE are also slow, bringing down the
overall performance.

P1

P2

Pn

P1 P2 Pn

Buf
2,1

Buf
n,1

Buf
2,n

Buf
1,2

Buf
1,n

Buf
1,2

Receivers

2.3 A Fully SPE-Centric Model
with Application Data in Local
Store (Design 2)

 In this model the whole of MPI library
runs on the SPE. All the functionalities of
buffer management and synchronization
provided by the pthreads in the model
described in section 2.2 are moved in to the
SPE. Each MPI node is assigned to one SPE.
The send and receive operations are as
described in the section 2.1.In this model the
whole of application data and code is in the
SPE local store. The message buffers are
moved to the main memory to give way for
the application data.

Se
nd

er
s

Location Tag Datatype Size Flag

Meta-data entry

 This model performed better than the
model described in section 2.2. But since the
code and data must fit in the SPE local store
which is only 256 KB we are restricted to a
small number of applications.

2.4 A Fully SPE-Centric Model
with Application Data in Main
Memory (Design 3)

 This model is an extension to the model
described in the section 2.3. In order to
overcome the restriction on the size of the
application data owing to the small size of
the SPE local store we moved the

application data to the main memory. In this
model a PPE process is spawned which then
creates the SPE threads. All the application
code runs in the SPE, but the application
data is moved to the main memory area of
the PPE program. The data is moved
between the main memory and the local
store as and when needed for processing.

Figure 2 Latency results for point-to-
point communication for Design 2 (data
in local store).

Figure 3 Bandwidth results for point-to-
point communication for Design 2 (data
in local store).

 Send and receive operations copy
messages from main memory to main
memory. They are implemented in a
synchronous manner to eliminate the

necessity of buffering for large messages.
This approach has removed the memory
restrictions on the size of the application
data. The best results were obtained using
this model.

3. Experimental Results

 The main purpose of our experiments was
to study the feasibility of MPI on Cell. We
evaluated the bandwidth and latency results
for the point to point calls. All our results
were obtained by running on a Cell blade
running at 3.2 GHz.

Figure 4 Latency results for point-to-
point communication for Design 3 (data
in main memory).

Figure 5 Bandwidth results for point-to-
point communication Design 3 (data in
main memory).

 Figure 2 shows the latency results and
Figure 3 shows the bandwidth results for
point-to-point communication primitives for
the implementation where the data and code
fit into the local store. Figure 4 shows the
latency results and Figure 5 shows the
bandwidth results for point-to-point
communication primitives for the
implementation where data is in the main
memory. The latency is substantially lower
than for the case where data is in local store
with the best value being 1.6 microseconds.
 The bandwidth results are also better for
this version on the hardware with a best
value of 4.8 GB/s.

4. Conclusions and Future Work

 We have presented different approaches
to the design and implementation of core
features of MPI on the Cell Architecture.
We have studied the bandwidth and latency
results for the point to point communication
calls. Our results are very encouraging and
support the idea of running MPI applications
on the Cell processor.
 In future we intend to work on
overcoming the limitations on the
application code size using code overlaying.
We also intend to implement other features
of MPI on the Cell Architecture.

Acknowledgment

 We express our gratitude to Sri
Sathya Sai Baba for bringing us all together
to perform this work, and for inspiring and
helping us toward our goal. Our sincere
thanks to IBM Corporation, for giving us the
opportunity to learn Cell Architecture and
Programming through a summer project.

References

[1] Samuel Williams, John Shalf, Leonid
Oliker Shoaib Kamil, Parry Husbands,
Katherine Yelick, The Potential of the Cell
Processor for Scientific Computing CF’06,
May 3–5, 2006, Ischia, Italy.
[2] M. Ohara, H. Inoue, Y. Sohda,
H.Komatsu, T. Nakatani MPI microtask for
programming the Cell Broadband EngineTM
processor IBM SYSTEMS JOURNAL,
VOL 45, NO 1, 2006.
[3] Kayvon Fatahalian, Timothy J. Knight,
Mike Houston, Mattan Erez, Sequoia:
Programming the Memory Hierarchy
SC2006 November 2006, Tampa, Florida,
USA 2006 IEEE
[4] MultiCore Framework, Harnessing the
Performance of the Cell BE™ Processor
2006 Mercury Computer Systems, Inc.
[5] Hong Tang, Kai Shen, Tao Yang.,
Program Transformation and Runtime
Support for Threaded MPI Execution on
Shared-Memory Machines, ACM
Transactions on Programming Languages
and Systems, Vol. 22, No. 4, July 2000,
Pages 673-700.
[6] An introduction to compiling for the Cell
Broadband Engine architecture, Part 4:
partitioning large tasks Feb 2006
http://www-
128.ibm.com/developerworks/edu/pa-dw-
pa-cbecompile4-i.html
[7] An introduction to compiling for the Cell
Broadband Engine architecture, Part 5:
Managing memory. Feb 2006 http://www-
128.ibm.com/developerworks/edu/pa-dw-
pa-cbecompile5-i.html
[8] T. Chen, R. Raghavan, J. Dale, E. Iwata.
Cell Broadband Engine Architecture and its
first implementation. November 2005.

http://www-128.ibm.com/developerworks/edu/pa-dw-pa-cbecompile4-i.html
http://www-128.ibm.com/developerworks/edu/pa-dw-pa-cbecompile4-i.html
http://www-128.ibm.com/developerworks/edu/pa-dw-pa-cbecompile4-i.html
http://www-128.ibm.com/developerworks/edu/pa-dw-pa-cbecompile5-i.html
http://www-128.ibm.com/developerworks/edu/pa-dw-pa-cbecompile5-i.html
http://www-128.ibm.com/developerworks/edu/pa-dw-pa-cbecompile5-i.html

