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Abstract 

 
    The Cell Broadband Engine Architecture 
(CBEA) designed by Sony, Toshiba and 
IBM is a heterogeneous multi-core 
processor. Though aimed at the gaming 
industry the Cell processor has a good 
potential for scientific computation.  Our 
work is aimed at analyzing the potential of 
the Cell processor for running MPI 
(Message Passing Interface) applications. 
Our work involves the implementation of 
the basic calls of the Message Passing 
Interface, study of the bandwidth and 
latency of the library. Also we have studied 
different models for the implementation of 
MPI on the Cell processor. Our initial 
experiments have shown encouraging 
results. 
 
1. Introduction 

 
    The introduction of multi-core processors 
and simultaneous multi-threaded (SMT) 
processors has opened up the possibility of 
parallel computation on a single chip. The 
Cell Broadband Engine Architecture 
developed by Sony, Toshiba and IBM is a 
move towards providing supercomputing 
power on a single chip through a 
heterogeneous multi-core processor design. 
This new design with eight computation-
intensive cores, each having its own private 

high speed memory encourages the idea of 
highly parallel applications. 
    We explore different approaches for 
implementing a Message Passing Interface 
library that would enable the large number 
of MPI applications that are found in the 
scientific community to run on the Cell 
processor. The Cell processor has one 64-bit 
SMT PowerPC core, the PPE (PowerPC 
Processor Element). It acts as the controller 
for the eight computationally intensive 
SIMD cores called as the Synergistic 
Processor Elements (SPEs). Each of the 
SPEs has a private memory of size 256KB 
called the Local Store (LS). The load and 
store instructions of the SPE act on the data 
from its own local store. Each SPE has an 
associated DMA engine that is used for 
moving data between the main memory and 
the local store, allowing for overlapping of 
computation and communication. The SPEs 
can communicate among themselves and 
also with the PPE through mailboxes and 
signal notification registers. Our work 
comprises of implementing a minimal MPI 
library that would enable MPI applications 
to run on the Cell processor with each SPE 
being considered as one MPI node. 
 
2. Related work 
 
    The coming of a heterogeneous multi-
core processor like the Cell processor which  



has enormous computational power has 
caught the attention of the scientific 
community. Work has been done to port a 
number of computational kernels like 
DGEMM, SGEMM, 1D FFT and 2D FFT to 
the Cell processor [1]. Results of the work 
have shown the potential of the Cell 
processor for scientific computation [1]. 
Some amount of work has been done in the 
direction of developing frameworks that 
would enable the programming of Cell at an 
abstract level [2, 3, and 4]. Comprehensive 
work has been done in the past on the 
implementation of MPI library on shared 
memory machines [5]. Since the local store 
of each of the Synergistic Processor 
Elements is too small for most of the 
applications, research on developing 
compiler and runtime support for running 
programs with data and text sizes larger than 
the size of the local store  is being carried 
out [6 , 7]. However, to date, an attempt to 
study the potential of Cell for supporting the 
large number of existing MPI applications 
through the implementation of an MPI 
library for Cell processor does not appear in 
the literature. 
  
2. Design and Architecture of MPI 
on Cell 
  
    We have tried three different approaches 
for implementing the MPI library on the 
Cell processor. In the first model each MPI 
node has two components: one SPE thread 
that runs on the SPE core and a pthread 
which runs on the PPE and serves the SPE 
thread with some of the functionality. In the 
second model the PPE is involved only 
during the initialization and finalization 
phase of the MPI application. All the 
computation and communication 
functionalities run on the SPE. The third 
model is an extension to the second model to 
support applications with large data sets and 
is implemented in the ‘synchronous’ mode. 

Section 2.1 describes the basic 
communication architecture. Sections 2.2, 
2.3 and 2.4 describe the first, second and 
third models respectively. 
 
2.1 Communication Architecture 
     
    Let N be the number of MPI nodes. Our 
runtime environment allocates N*(N-1) 
buffers, since each node can send messages 
to N-1 nodes (a process is not allowed to 
send messages to itself in standard mode). 
Each buffer is designated to a sender-
receiver pair Pi and Pj. The buffer 
corresponding to sender as Pi and receiver as 
Pj is different from the buffer corresponding 
to Pj as sender and Pi as receiver. All the 
buffers corresponding to a sender are 
managed by that sender. Figure 1 shows the 
communication architecture in detail. The 
organization of the message buffers and the 
structure of the meta-data entry are shown. 
     The sending and receiving processes 
communicate information about the 
location, tag, and size of the messages 
through meta-data stored in buffers 
corresponding to each pair. There are    
N*(N – 1) buffers used for storing the meta-
data corresponding to each sender- receiver 
pair. The buffers containing the meta-data 
are organized as an array of entries. The 
meta-data buffer is managed in a manner 
similar to message queues in the sense that a 
new meta-data entry cannot overtake a 
previous meta-data entry and is also 
searched in a linear fashion to ensure 
message ordering.  An entry is made by a 
sender after copying the message into the 
message buffer. The entry contains the 
information about the location of the 
message within the buffer, the tag associated 
with it, the data type and size of the message 
and flag bits.  
    The location of the buffers and the 
functionalities of the PPE and SPEs vary 
between the different models. In the first 



model the management of the buffer 
memory is done by the PPE at the request of 
the SPE, whereas in the second and third 
models, it is done by the SPEs. Also, the 
number of buffers is N*N, in the third 
model.  
 

 
 

 
Figure 1: Communication Architecture 
 
2.2 SPE-Centric Single Program 
Multiple Data model (Design 1) 
     
    Each MPI node is composed of two 
components, one running on the SPE and a 
pthread running on the PPE. The point to 
point communication calls are implemented 
in buffered mode. The application code runs 
on the SPE and the pthread corresponding to 
each SPE acts as a server performing certain 
functionalities related to management of the 
message buffers and synchronization 
between two SPEs. The SPEs perform all of 
the computation and make requests to the 
pthread through mailbox messages. 

   In this model buffers used by the point to 
point communication operations are located 
in the SPE local store, since the SPE to SPE 
DMA transfers are faster than SPE to main 
memory DMA transfers. The send and 
receive operations are as described in the 
section 2.1. This model has the advantage of 
high speed message transfers since on-chip 
DMAs are faster. But the mailbox 
communication between the SPE and PPE is 
slow and the functionalities provided by the 
PPE are also slow, bringing down the 
overall performance. 
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2.3 A Fully SPE-Centric Model 
with Application Data in Local 
Store (Design 2) 
     
    In this model the whole of MPI library 
runs on the SPE. All the functionalities of 
buffer management and synchronization 
provided by the pthreads in the model 
described in section 2.2 are moved in to the 
SPE. Each MPI node is assigned to one SPE. 
The send and receive operations are as 
described in the section 2.1.In this model the 
whole of application data and code is in the 
SPE local store. The message buffers are 
moved to the main memory to give way for 
the application data. 
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    This model performed better than the 
model described in section 2.2. But since the 
code and data must fit in the SPE local store 
which is only 256 KB we are restricted to a 
small number of applications. 
 
2.4 A Fully SPE-Centric Model 
with Application Data in Main 
Memory (Design 3) 
 
    This model is an extension to the model 
described in the section 2.3. In order to 
overcome the restriction on the size of the 
application data owing to the small size of 
the SPE local store we moved the 



application data to the main memory. In this 
model a PPE process is spawned which then 
creates the SPE threads. All the application 
code runs in the SPE, but the application 
data is moved to the main memory area of 
the PPE program. The data is moved 
between the main memory and the local 
store as and when needed for processing. 
 

 
 
Figure 2 Latency results for point-to-
point communication for Design 2 (data 
in local store). 
 

 
 
Figure 3 Bandwidth results for point-to-
point communication for Design 2 (data 
in local store). 
 
   Send and receive operations copy 
messages from main memory to main 
memory. They are implemented in a 
synchronous manner to eliminate the 

necessity of buffering for large messages. 
This approach has removed the memory 
restrictions on the size of the application 
data. The best results were obtained using 
this model. 
 
3. Experimental Results 
 
    The main purpose of our experiments was 
to study the feasibility of MPI on Cell. We 
evaluated the bandwidth and latency results 
for the point to point calls. All our results 
were obtained by running on a Cell blade 
running at 3.2 GHz.  
 

 
    
Figure 4 Latency results for point-to-
point communication for Design 3 (data 
in main memory). 
 

 
 
Figure 5 Bandwidth results for point-to-
point communication Design 3 (data in 
main memory). 



 
    Figure 2 shows the latency results and 
Figure 3  shows the    bandwidth   results for  
point-to-point communication primitives for  
the implementation where the data and code 
fit into the local store.    Figure 4 shows the 
latency results and Figure 5 shows the 
bandwidth results for point-to-point 
communication primitives for the 
implementation where data is in the main 
memory. The latency is substantially lower 
than for the case where data is in local store 
with the best value being 1.6 microseconds.  
    The bandwidth results are also better for 
this version on the hardware with a best 
value of 4.8 GB/s. 
 
4. Conclusions and Future Work 
 
    We have presented different approaches 
to the design and implementation of core 
features of MPI on the Cell Architecture. 
We have studied the bandwidth and latency 
results for the point to point communication 
calls. Our results are very encouraging and 
support the idea of running MPI applications 
on the Cell processor. 
    In future we intend to work on 
overcoming the limitations on the 
application code size using code overlaying. 
We also intend to implement other features 
of MPI on the Cell Architecture. 
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