
Efficient power utilization of a cluster using scheduler queues
Kalyana Chadalvada, Shivaraj Nidoni, Toby Sebastian

HPCC, Global Solutions Engineering
Bangalore Development Centre, DELL Inc.

{kalyana_chadalavada;shivaraj_nidoni;toby_sebastian}@dell.com

Abstract:
 Clustering has become very common in high performance computing. The
efficient utilization of all nodes in a cluster is managed using schedulers. A scheduler,
however, will not be able to efficiently plan the optimal power usage of the cluster. Thus
an efficient scheduling of jobs does not guarantee efficient utilization of power heat
generation. We propose a mechanism by which the scheduler can plan efficient job
allocation along with optimal power utilization.

Motivation:
In the modern day data center, performance alone is no longer the only yard stick on
which a system is designed. Power consumption and HVAC requirements have gained a
lot of significance. What system designers are looking at as the new metric is
“performance per watt” rather than “performance per price” alone. Several approaches
exist to reduce the power consumption of systems. But these approaches alone are not
sufficient in a cluster environment. Current power saving mechanisms are not sufficient
by themselves to achieve appreciable power savings in a cluster environment. For
example, nodes in the cluster cannot be configured with various time based sleep states.
If a system is configured to suspend to disk after being idle for 45 mins will show up as a
dead node as soon as the system does that. Current cluster management software stacks
and schedulers do not understand that the system is in a power saving state.

The job scheduler in a cluster is aware of the current state of the queue at any given point
of time. Depending on the queue SLA’s, it can predict to some extent, the system usage.
By looking at the cluster usage statistics, and combined with a learning algorithm,
scheduler can compute which nodes will be used in the near future. The nodes which are
not seen as required can be marked and powered off by scheduler. When a requirement
arises, scheduler can power up the inactive nodes and utilize them for job scheduling.
This will improve power consumption and reduce heat generated by a cluster, which is an
area of concern in a modern data center.

Description of proposal:
New generation of systems now implement one or more types of out of band access
mechanisms based on IPMI/BMC standard. This gives the end user ability to remotely
manager systems without paying a premium for this capability. It also allows
programmatic control of systems based on events or triggers. Modern processors, systems
and operating environments also are better at power management. Some examples
include AMD PowerNow!, Intel SpeedStep, demand based switching, bus / frequency
throttling, ACPI compliance and the like. The processors themselves are able to support

multiple sleep states to reduce power consumption. For example, if a UNIX bases system
is currently active at init level 5, it has a host of services active that are needed when the
system is being actually used. So, the amount of memory actively used and the number of
components actively used is more than at init level 2. So, we need a complimentary
mechanism that can work along with existing technologies and help achieve better power
management without too much overhead.

The proposal is to provide extend the cluster job scheduler to achieve the following:

• Implementing a learning mechanism to understand cluster usage patterns
• Aware of an out of band connectivity to the cluster nodes like IPMI/BMC or any

other ILO mechanisms
• Able to introduce new “node status” values

Traditionally, the node status is broadly marked as follows:

• Available – available for use
• Closed – not available for use
• Dead – unable to reach the system

We plan to extend the above to include the following:

• Sleeping – system is put in a stand by mode (suspend to memory)
• Hibernating / switched off – system is switched off or put in hibernation (suspend

to disk)

The scheduler is provided access to the cluster node’s out of band network in addition to
the administration fabric. For the sake of discussion, let us consider using IPMI/BMC as
the OOB fabric. Figure 1 illustrates a typical cluster setup. Since this is a standards based
implementation, it would be easier for the scheduler developers to provide support of the
same. The IPMI specification provides “remote power on” and “remote power off”
commands without the need for an OS agent.

At set intervals, the job scheduler will inspect the state of the queues and the nodes.
Based on cluster usage patterns and/or administrator set exceptions, the scheduler will
draw up a set of nodes that can be put in various sleep states. This can be achieved in
several ways. Let us first describe probable power saving states:

• OS based
o Move to a lower init level to shut off un-necessary services and reduce

memory / processor / NIC/ hard disk usage
o OS initiated sleep states – suspend to memory / suspend to hard disk
o Turn off display / network / disk
o Force processor to move to several native sleep states through API’s

where available – Ex:C0,C1,C2,C3
o Force multiple cores / processors to go offline

• OOB fabric based
o Graceful shutdown

Figure 1. Typical cluster setup and components

The scheduler daemon on the nodes can fire off appropriate system calls and/or API calls
to achieve all OS based power saving mechanisms. In case of scheduler daemon not
reachable due to the system sleep state; scheduler can utilize the OOB fabric to bring the
system back up. In case of a multi core / multi processor system, the easiest method is to
force all cores and processors to go offline and have one core active. Vendor APIs and
OS support needs to be available for this.

The scheduler will have a threshold value for each state. The system can be moved to a
lower sleep state only if it has spent a set value of time in the current state. For example,
a fully functional system can be moved to lower init level only when it has been idle for
30 mins and there is a computed forecast of at least 15 mins idle time. Similarly a system
can be put in suspend to disk or shutdown only if it has spent atleast 60 mins in suspend
to memory and there is a computed forecast of at least 15mins time. This will avoid node
thrashing, a state in which the system is moving across various sleep states in small time
intervals and not providing a significant power saving. Administrators can also set
exceptions on certain systems, queues to guarantee a minimum SLA / high priority nodes.

A simple flow chart of the scheduler decision process is illustrated in figure 2.

When the scheduler detects that a system is needed, it will look up the state of the node in
its table and if the system is in a sleep state; the scheduler will put the job on hold till it
brings the system back online. As soon as the system is brought to this active state, the
job is scheduled on the node.

Figure 2. Slow chart of scheduler decision process

Future Work:
Implement a minimal proof of concept on existing open source schedulers like OpenPBS.
A sample implementation will help us measure the probable power savings. We plan to
support IPMI based OOB and LINUX supported power saving states. Possible changes
also include modifying the cluster management / monitoring software like ROCKS /
Ganglia to understand power saving states.

Conclusion:

 We are proposing a minor modification to the current scheduler which will
improve power utilization in a cluster. We would like to make the following
enhancements moving forward:

• Use learning algorithms to get understand the nodes utilization patterns in
a cluster and make the decisions on the basis of utilization statistics.

