
1

Hardware Support for .NET MicroFramework CLR Components
Sneha.M, Sri Charanya.D, Usha Bhuvaneswari.R

Guided by Prof. Dr.Ranjani Parthasarathi
Department of Computer Science, College of Engineering, Guindy, Anna University

Abstract
Microsoft introduced the .NET Framework, which brings the power and reliability of managed code to
scale from large servers to embedded devices. However, many devices are still too small/resource
constrained to support these platforms. To serve the market for even smaller devices, Microsoft has
developed a new platform Microsoft .NET Micro Framework (.NET MF). Field Programmable Gate
Arrays (FPGAs), which are reconfigurable, provide a faster execution environment in addition to low
initial cost and minimal usage of silicon space. Here, we propose to provide hardware support (on
FPGA) for the .NET MicroFramework CLR.

I. Introduction
From sensor networks to smart watches, there are new applications that require low hardware cost and
low power consumption, but would benefit from the flexibility, reliability, code reuse, and great tools
of .NET. The .NET MicroFramework is designed to work on devices where hardware capabilities are
too limited to be practical with the full .NET or .NET Compact Framework running on Windows XP
Embedded or Windows CE.

 With the proliferation of embedded devices, the system design paradigm has shifted from the
conventional design to hardware-software co-design. The focus is on building customized hardware
and software. The hardware customization has been facilitated by Field Programmable Gate Arrays
(FPGAs). FPGAs, which are reconfigurable, provide a faster execution environment in addition to low
initial cost and minimal usage of silicon space. FPGA is an array of logic gates that can be hardware-
programmed to implement user-specified tasks. Using FPGAs, one can devise special purpose
functional units that may be very efficient for some limited task. It is also possible to customize the
entire instruction processor using these devices. As FPGAs can be reconfigured dynamically, it is
possible to design customized systems for more complex special tasks at speeds that are higher than
what can be achieved with general-purpose processors.

The paper is organized as follows. Section II discusses the past trend regarding the design of virtual
machines, and about the related work going on. Section III introduces the .NET MicroFramework, the
CLR and its components. Section IV details about our scheme of implementation of the CLR,
highlighting the design.

II. Related Work
The field of virtual machines (VM), and language-independent and platform-independent execution
environments has always fascinated language designers and implementers for a long time. Such
implementations have a lot of advantages over the native compilers strategy, the main objective of
adopting such an approach being portability. Portability is achieved by having the high level code
translated to an intermediate form, which a system, usually called the Virtual Machine, translates to the
native code of the target architecture. The virtual machine is a software implementation that lies
between the application and the operating system. Or in other words, the VM can be thought of as a
program that can run other programs. One of the ways of realizing such a virtual Machine system, and
the widely adopted one, is by modeling the VM as a stack. The reason for adopting a stack-based
architecture is that, any virtual machine, which aims to achieve portability across platforms, cannot
make assumptions on the underlying architecture. A stack, on the other hand can offer higher level
abstractions and abstract actions can be specified on a stack (push, pop, addtop- two etc.). Thus, it
becomes desirable to model VMs as abstract stack machines.

The intermediate code form for Java is the Byte code, and the execution environment is called Java
Virtual machine. Many advances have been done to increase the speed of execution. One way to
achieve faster runtime is to have dedicated java coprocessors or to have specific processors(Java
Processors) that can execute Byte codes. There have also been complete FPGA implementations of
JVM[5].

.NET is an upcoming technology that is now given attention by embedded systems groups and
reconfigurable computing groups. There is a chip that is capable of running a very restricted subset of

2

the CLR but the scope of the application is pretty narrow. An implementation of the .NET CLR
Execution engine has been done on FPGAs[1]. But this implementation of the execution engine
supports a set of basic instructions such as arithmetic, logical and comparison instructions. The engine
has been modeled as a stack based machine, the stack being maintained in the hardware. The CLR
engine runs on the MicroBlaze softcore processor provided by Xilinx specially for FPGAs. We aim at
enhancing the execution engine and providing hardware support for the other features of the CLR.

SPOT (Smart Personal Object Technology) is Microsoft’s new entrant in embedded device technology,
for task specific devices. It is, in a nutshell, a device based on "Ollie" - a 32-bit ARM7 processor core
that runs a very, very stripped down Windows OS. Right in the processor is a very scaled-down
Common Language Runtime (CLR) known as TinyCLR. What sets SPOT apart is that it leverages the
Rapid Application Development (RAD) capabilities Microsoft provides through managed code and
Visual Studio 2005. The TinyCLR has an even smaller footprint than what Windows CE offers, and is
designed for devices with limited resources and functionality.

III. The .NET MicroFramework
The .NET MicroFramework supports a subset of the .NET Framework and runs with or without an
underlying OS. So the footprint is smaller. Current configurations of the MicroFramework require
about 300K of RAM. The MicroFramework provides a subset of full OS features, so it does not require
an OS and is referred to as a ‘bootable’ runtime. Making the runtime ‘bootable’ means that booting
support, interrupt handling, threading and process management, heap management, and other
environmental support functions that are typically provided by the operating system have been added to
the .NET MicroFramework so that it can run directly on hardware. The OS services that are needed
by the application are provided up through the runtime. In creating a bootable runtime, the .NET MF
provides a subset of the OS features directly rather than relying on the underlying OS, the subset being
selected as services required to run applications on small devices.

Common Language Runtime:
The Common Language Environment (CLR) is the run-time environment of the .NET framework. It
manages the execution of code and provides services that make the development process easier. The
intermediate code form of the .NET system is called Common Intermediate Language (CIL) or the
Microsoft Intermediate language (MSIL). The .NET Microframework CLR is a small, optimized
“managed code” runtime based on industry-standard ECMA specifications. When native code
executes, the operating system really doesn’t know anything about the code and therefore can only
execute it blindly. Managed code includes a great deal of information about the code so that the CLR
can prevent errors.

The .NET Micro Framework CLR in detail:
.NET MicroFramework CLR implements all of the major features found in the full CLR. It omits a few
features that were deemed inappropriate for this class of device, and adds a few features that are
specific to this class of device. The Micro Framework CLR supports major features like Exception
handling, time sliced thread management, Garbage collection and defragmentation of memory. In
addition to that, there are other features like the type system - Numeric types, Class types, value types,
arrays, delegates, events, references, weak references, Serialization (compact version of the original
.NET serialization), Non-incremental Mark and Sweep Garbage Collection and Multiple application
domains. It also includes the self describing data, as opposed to separate meta data, so as to facilitate
garbage collection.

Execution Engine:

As with all managed code runtimes, the .NET MicroFramework CLR provides a virtual machine
abstraction that is targeted by the compiler tools from the source programming language. In order to
execute programs, a special engine is required to load, prepare, and perform the instructions specified
in the program (the Intermediate Language [IL]). One of the key benefits of this design is that it allows
for code to be developed independently of the actual hardware on which it runs. Since programs are
specified in terms of a virtual machine, the execution engine must translate encoded operations into
native operations (i.e., instructions that can be performed by actual hardware).
There are two basic approaches (and a myriad of variations) to accomplish this: interpret the code as it
is executing or compile it to native code, as it is needed (Just In Time [JIT]). .NET MicroFramework
CLR interprets program code.

3

Exception Handling:

One of the keys to creating a safe execution environment is the ability to effectively handle exceptional
runtime situations, which might occur as a result of unforeseen operating conditions. Applications are
allowed and encouraged to use the exception handling mechanisms found in traditional .NET
programs. The execution engine manages the dispatching and clean up associated with exceptions. In
addition, it has special mechanisms for protecting the integrity of the system as a whole from unruly
programs, by gracefully cleaning up state that could be causing a program to misbehave. Ultimately, a
program will be “blacklisted” if it continues to fail according to a pre-determined heuristic.

Garbage Collection:
In .Net MicroFramework which is specifically designed for specialized hardware devices the Garbage
collector the memory management is tied to the type system, making it possible to track memory at the
object level. This allows the system to reclaim “dead” objects and removes this burden from the
programmer. In addition, memory can be “compacted” to create contiguous free space for newly
allocated objects, thereby avoiding out of memory conditions due to heap fragmentation. This is
known as Garbage Collection (GC).

Every program uses resources of one sort or another—memory buffers, screen space, network
connections, database resources, and so on. In fact, in an object-oriented environment, every type
identifies some resource available for your program's use. To use any of these resources requires that
memory be allocated to represent the type. The steps required to access a resource are as follows:

1. Allocate memory for the type that represents the resource.
2. Initialize the memory to set the initial state of the resource and to make the resource usable.
3. Use the resource by accessing the instance members of the type (repeat as necessary).
4. Tear down the state of the resource to clean up.
5. Free the memory.

Although the above paradigm seems very simple, freeing memory when it is no longer needed or
attempting to use memory after it has been already freed are two important concerns. In .Net, the
developer can use certain methods for explicitly cleaning memory.

Multi-threading:
.NET MicroFramework CLR provides multi-threading support, even when the underlying platform
does not. While not a true multi-threaded kernel, the execution engine simulates one by offering time-
sliced context switching using 20ms quantum. Threads are prioritized and interruptible (due to
instruction level interpretation hardware).

IV. Proposed work
We intend to provide hardware support to the .NET MicroFramework Common Language Runtime for
embedded systems (CLR) on FPGAs so that programs targeted to run on CLR software engine are
accelerated. The system is to be built atop the MicroBlaze softcore processor, which will run on a
Xilinx FPGA board.

The very common solution to build any general VM is to have it as an interpreter and/or a JIT compiler
or an AOT compiler. This kind of a software solution is relatively easier to build and cost effective, but
it compromises on the performance. But the price they demand is flexibility. Moreover, complexity and
cost are high for such an approach. Our objective is to exploit the advantages of both these approaches
by employing both of them. In other words, we propose a co-design sort of an approach to achieve a
better negotiation between cost and performance. Also, with this paradigm lies flexibility too. A goal of
the co-designed CLR is to achieve better performance over a pure software solution. The hardware
partition of the co-designed CLR is proposed to work in unison with the host processor, which can be a
GPP (which in our case happens to be a softcore). The choice of an FPGA provides a development
environment for easily shifting the partitioning between hardware and software to arrive at an
optimized solution, and the flexibility to fit the design into targets of different sizes. Fig. 1 gives the
overall block diagram of the system.

4

Fig 1: Overall block diagram
From a very high level, the following are the tasks to be performed by the CLR: Loading, verification,
translation and interpretation, memory management and garbage collection, code management,
exception handling and thread support. The hardware-software codesign approach is followed to design
the system. All features that are beneficial to be hardwarized are configured in hardware. The software
partition supports the remaining features and also provides system support required by the underlying
hardware system. The instructions of the CLR are implemented in both the software and hardware
partition. The hardware partition includes any instructions that can be implemented in hardware, like
frequently occurring instructions such as stack manipulations, and arithmetic operations.
Our project will consist of the following modules: (1) CLR Execution engine (2) Garbage collector (3)
Exception handler (4) Thread manager

(1) CLR Execution engine
A CLR Execution engine has been developed that maintains the stack in hardware[1]. The software
executor, CLR engine, forms the software partition and is responsible for the execution of CIL code.
The previous implementation[1] does not support object oriented and object modeling instructions that
are necessary for implementing other features like garbage collection, threading etc. Our
implementation enhances the existing engine with the object modeling instructions and other
instructions that form part of the .NET MicroFramework.

Since the CLR engine is implemented using a hardware stack, handling stack overflows is of prime
importance. The stack overflow problem is handled using a spill fill handler. The stack is maintained as
a circular one. A backing store is setup as a linear block of memory to hold the spilt entries. Spilling of
the stack is done when the stack becomes full. Instead of spilling the whole stack, half of it is spilt. A
threshold is fixed for the filling of the stack. When the threshold is reached, the stack is refilled from
the backing store. To exploit the concurrency of FPGAs and not to have the memory access overhead,
dual port RAMs are used so that a read and write to the external memory can be done concurrently.
This obviates the unnecessary stalls that might arise in the case of a single port RAM. Fig 2 shows a
block diagram of the execution engine with the spill fill handler.

Fig2 : CLR Execution engine
(2) Thread manager
Thread management needs a lot of support from the hardware. It demands multiple set of special
registers like Program counter and Stack pointer, and also multiple independent copies of the general
purpose registers. Then, threading would involve keeping track in the processor, the thread currently in
execution using a number of bits. There also needs to be a powerful scheduler to select the appropriate
thread for execution, which in turn demands timer support from hardware. In our implementation, we
use a MicroBlaze softcore processor which doesn’t support multiple sets of registers. Thus, to
implement threading atop the MicroBlaze, we will have to bear the cost of context switching. This is
very expensive, with respect to both time and memory. Since it slows down the execution and also

Configured
functional

units

FPGA
Softcore

Garbage collector

CLR execution Engine

Exception handler

Thread manager

Backing StoreStack cache

CLR

Instruction Buffer

Data Area

SpillFillhandler

5

demands precious memory (which is limited in an embedded device), it is not very efficient to
implement it on the MicroBlaze. Thus, it can be implemented using a different underlying processor (a
version that would support threading) or by configuring of the required special registers in the
reconfigurable hardware.

(3) Garbage collector
Garbage collection used in .NET MicroFramework is the Mark and Sweep method explained in the
previous section. The heap is be divided into fixed size pages. There is a Next Object Pointer which
keeps track of the next available free page for the objects. Our design has a heap manager to control the
marking and sweeping of the heap. A mark table is maintained which has information about marked
pages. Fig 3 gives a high level design of the garbage collector module.

 Fig 3 : Garbage collector
(4) Exception handler
Exception handling requires little support from the hardware, except for a few registers for exception
identifier, handler address etc. Hence, the exception handler is handled in the software partition.

All these modules (components) together will constitute the .NET MicroFramework CLR.

V. Conclusion
Many embedded devices are too small to support the full .NET Framework. Also, they don’t need the
entire functionality that the .NET Framework provides. The .NET Micro Framework provides a small,
efficient implementation of the .NET runtime for smaller devices. Enhancing that with hardware
support has great advantages to developers in terms of performance, speed and portability. Our
implementation of the .NET MicroFramework CLR is be a hardware-software combination,
comprising of the execution engine and the other constituents of the CLR (garbage collection, thread
management, exception handling). The codesign approach lends enhanced performance to this
hardware supported CLR as compared to the existing pure software implementation. The advantages
and limitations of this approach are analyzed.

VII. References
[1] Srinath S, Srinivasan.T, VidhyaBhushan.M, Ranjani Parthasarathi, Department of Computer
Science, Anna University, ‘Implementation of .NET CLR on FPGAs’, 2005.
[2]Microsoft .NET Micro Framework white paper,
www.aboutnetmf.com/NET_Micro_Framework_Whitepaper_v_1.0.doc
[3] Article on ‘Garbage Collection: Automatic memory management in the .NET Micro Framework’
by Jeffery Ritcher, MSDN magazine, Nov 2000.
[4]David F.Bacon, Perry Cheng, David Grove, IBM T.J. Watson Research Center, ‘Garbage collection
for Embedded Systems’.
[5] L.V. Nagendra Kumar, International Institute of Information Technology, Gachibowli, Hyderabad,
India, ‘JVM Implementation in FPGAs’, B.Tech final year Project report, 2002.
[6]The following article from the Intel website was referred.
“Itanium® Processor Family Performance Advantages: Register Stack Architecture”, By Scott
Townsend,
 http://www.intel.com/cd/ids/developer/asmo-na/eng/affiliate/hp/20314.htm
[7] ECMA Draft (ECMA/TC39TG3/2000/3)- Part 3 IL Instruction Set, March 2000.
[8] Ryan Rakvic, Ed Grochowski, Bryan Black, Murali Annavaram, Trung Diep, and John P. Shen.
Performance Advantage of the Register Stack in Intel® Itanium™ Processors, Microprocessor
Research, Intel Labs (MRL),2002.

NextObject
pointer

Heap Manager

Mark table

Heap

