
Optimal Placement of Java Objects and
Generated Code in a Cell-based CC-NUMA Machine

Prakash Raghavendra, Sandya Mannarsamy

Hewlett-Packard, India

srp@hp.com, sandya.s.mannarswamy@hp.com

Abstract
Server-side Java applications are known to run for
long time and to create lots of objects during their
run. The memory access latencies on a CC-NUMA
machine from cell-local memory to non-local
memory differ in the order of 10. This means that
access times for some data in local memory to a
processor would be about 10 times faster than
accessing data from a non-local memory (sitting
local to other processor). This latency difference
may have adverse effect on performance of java
applications which create lots of objects and run for
long time. The idea presented here is to optimally
place these objects in local memories of different
cells so that overall access times are reduced
significantly. This has seen to improve the
performance of the applications in the order of 20-
30% for some application like SPECjbbs.

Dynamic optimization systems like JVMs store
optimized or translated code in software managed
code caches in order to maximize use of
native/optimized code. Code caches store dynamic
compiler generated code fragments either at method
level or at loop level. The code cache is allocated at
runtime by the JVM, and as the methods are
compiled, the generated code is placed in code
caches, and is reused by threads which execute
further calls to the method. In this work, we propose
a dynamic compiler scheme for splitting the code
buffer on a per locality domain, on the basis of the
access patterns of these methods by the threads. We
use the escape analysis information (as in which
method escapes which thread) and the profile
information to identify sets of methods to which
certain threads have high affinity (in the sense that
these methods are mostly executed by only those
threads) and use the information to place the
generated code for such methods in code buffer
fragments on the same locality domain where those
threads are scheduled. This is aimed at reducing the
remote misses in accessing the code buffers by the
threads which have strong affinity for the
corresponding code buffer fragments.

1.0 Introduction
Large SMP systems are characterized with multiple
locality domains. IBM has MCMs, HP has cells. The
memory access latency is different within a locality
domain versus between locality domains. There
could even be different types of latencies between
different levels of locality domains. A Superdome's
single cabinet could have slightly lower latency
compared to the other cabinet.

The time to access an object/code instruction in local
memory of a cell could be in the order of 10 times
lesser when compared to time to access an object in
non-local memory. This may have adverse effect for
Java-based applications, which create large number
of objects (like memory intensive applications) and
which run for long time (like server-based
applications). For example, if a java thread T1,
running on processor P1 in cell C1, access an object
in memory of cell C2, most of the time, and this
region of code happens to be one of the hotspots
(that is program spends much time in this part of the
code) of the application, then performance would
degrade by an order of 5-10. If, however, we had
placed this object in C2 in C1, before this hotspot
begins to execute, the same could have run much
efficiently due to lesser number of non-local access
to memory.

The idea presented here would describe a strategy
which can be used to statically place these objects
(during the start of the program) and eventually re-
distribute dynamically depending on the change of
access patterns of these objects (from different
threads), so that overall non-local accesses for the
program is reduced to minimum. This would
improve the performance of such server-side java
application significantly.

Improving non-local access latencies in CC-NUMA
architectures has been studied well by research
community. Most adopt dynamic page placement for
improving locality. This technique works very well
transparent to the applications. However, these seen
to work only for C/C++ based applications, which

have regular access patterns, such as scientific
applications. However, unlike such applications,
java based applications tend to make extensive use
of heap allocated memory and typically have
significant pointer chasing code. Hence dynamic
page placement techniques are known not to work
well for these kinds of applications. Other known
techniques are applicable for cluster-JVM (cJVMs)
which are designed for cluster machines. These
techniques are not suitable for CC-NUMA due to the
fact that latencies on a cluster system differ more
than on CC-NUMA machines.

Optimizing programs for their efficient usage of
memory has been well studied in literature. We
would like to classify such work as C/C++ based and
Java based, since the issues which are applicable to
Java are unique. For example, C/C++ usually access
the memory in a regular fashion (the locality of
reference holds good most of the time). However,
with Java, due to heap allocation and garbage
collections, the access pattern may not follow any
regular pattern and so techniques which work well
for C/C++ may not work well for Java as well.

In [4], there is a discussion of various techniques of
page mapping techniques, which are quite popular
and have been implemented in many operating
systems, including HPUX and others. These
techniques are known to work well for C/C++
programs. These are transparent to the user as well.
[5] discusses a dynamic page placement technique,
which decides the placement of pages on a cell and
also migrating these as the access patterns change
due to different behaviour of the program. The study
was specifically done for TPCC, which is not Java
based application. [7] discusses a technique, which
is based on loads/store prefetching.

For Java, [6] gives a technique, where the authors
have proposed to partition the java heap of a process
to be placed on various nodes/cell of a CC-NUMA
machine, whereby making the heap aware of NUMA
behaviour.

In the Java performance lab, we did several
experiments to see whether the current known
techniques work well for Java workloads. We ran
Specjbb on a 64p (128c) machine, which has 16 cells
each having 4 processors. We saw that the
performance of the benchmark showed considerable
improvement if we turn on the cell interleaved
memory instead of cell local memory. Note also that
the HPUX operating system has the page placement

technique in the kernel. When we switched the
interleaved memory the pages of heap were
distributed evenly across all nodes in a round robin
fashion and all cells accessed them on all the cells
and no cell had a huge contention for memory
accesses. However with cell local memory, we saw
huge queues for updates for some busy part of the
heap, which brought down the performance.

Further, all the prior techniques do not work well for
long running applications, since they do not re-
distribute these objects as access patterns change
during the course of the application run. We propose
to change these placements as the application
behavior change during its course. The other salient
feature of our approach is the fact that we use the
information that are anyway collected by JVM and
we make the decisions of placement or re-
distribution of these objects during Garbage
collections (GCs). We are also not aware of any
work, which place the generated code by the virtual
machine, in the code space, which would be
accessed optimally across nodes.

The paper is organized as follows: The next section
gives the scheme of placement of java objects
optimally, section 3.0 explains the scheme to place
the code onto the target machine. We give an
example placement in section 4.0 and results in 5.0.
Finally, we give some ideas on future work and
conclude in section 6.0.

2.0 Optimal Placement of objects of a Java
based application

The technique follows a two-phased approach. In the
first phase, called, "Initial Placement Phase", we
place the objects as they get created. In the second
phase, we, on a need-basis, re-distribute these
objects, depending on the current access patterns of
the objects in the application. We will explain each
phase in the following sections.
The initial placement phase, does the placement of
objects into memory, by doing the static analysis.
There are various schemes possible, but, we adopt
simple scheme, called "creator-holds". This means
that the thread which creates an object places the
object in local memory of the processor on which it
runs. For example, when a thread T1, running on
processor P1, in cell C1, creates an object O1, O1 is
placed in cell local memory of C1. The idea is that,
since we do not know who will be accessing this
object most of the time in future, now, we assume

that T1 would be accessing this object most.
However, if the access pattern changes, for
example, if the thread T2 in cell C2 accesses this
object most, then it makes sense to move this object
O1 to C2. This is what is done during the second
phase, which is "Redistribution" phase.
The Redistribution phase is dynamic in nature, in the
sense that, the decision is based on the access pattern
of objects as the application runs. Garbage collector
(GC) is an important runtime component of the
JVM, which runs every time when JVM is not able
to allocate more objects. GC builds a graph of object
references to each other and removes those objects
which are dis-connected to the main graph (which
has root nodes of the program). We re-use this
information with a slight modification. When the
GC builds such a graph, we also add a counter which
registers the number of times the reference was
made between two objects O1 and O2. This would
give us "hotness" indicator for that reference.
Once such a graph is built, the second step is to
search for partitions in this graph such that
connectivity between these partitions are minimum.
The graph partition is a NP-hard problem and there
are many heuristic to solve this problem efficiently.
We use the technique developed by [2]A Multilevel
Algorithm for Partitioning Graphs by Bruce
Hendrickson and Robert Leland in Supercomputing
'95. This technique would do the partition of the
graph into k-partitions such that total weight of links
between the partitions is minimum. These k-
partitions correspond to k cells that are present in the
machine. Once we place these objects according to
the partitions we obtain, we would be minimal non-
local access placement at that time.
The last step is to check for benefit of re-
distribution at the current stage. Though the above
algorithm gives us a new partition, we need to check
whether it would really benefit to do the re-
distribution now. This is done by a heuristic. A
simple heuristic that we use is to check whether the
number of movements that are required is less than
20% of the number of objects. If yes, then we do not
think its worth the effort to re-distribute. We see
that, with this heuristic, we do not re-distribute
during most of the GCs, which is good, since these
redistributions would be a big overhead, if done
repeatedly.

3.0 Optimal Placement of dynamic code in
JVMs

Code is generated in much smaller snippets and its
access patterns can be determined by the run time
environment. For instance, in a multi-threaded
program, different threads may be doing different
work and so be working with different Java
methods. In these cases, we can generate code with
closer locality to methods generated for a thread.
Even if we do nothing else and the total code needed
by a thread falls in its own set of virtual pages, the
OS can locate those pages into physical memory
closest to the processor on which the corresponding
threads are running.
But a further optimization would be to break the
code buffer into multiple pieces, each corresponding
to a thread, and maybe a common area. Then the
code is generated into each such piece and placed
inside individual (Cell Local Memory) CLMs. In
Java virtual machines, the compiler generated code
is maintained in a separate software managed code
cache. The management of code cache in order to
reduce memory latencies by cache misses is an
important factor in improving the overall
performance of the JVM.
In general, “escape analysis”[3] information is
gathered by the compiler in order to recognize which
objects can be allocated on the stack instead of on
the heap. Escape analysis gives for each thread, what
are the set of methods that do not escape the thread.
This means those methods which are executed only
by this thread. We use this information to divide the
set of hot methods into different partitions such that
each partition consists of a set of methods and a set
of threads such that each method falls into the non-
escape set of the thread. We use the online profile
information to find the methods which suffer from
remote memory misses in their code cache accesses.
This information is fed back to the JVM such that
the hotspot compiler can allocate the code cache for
each set of methods such that the methods are
mapped on to the same locality domain where the
threads can be scheduled. This information is also
outputted to the programmer as an advice so that if
the programmer desires, he can use the pset calls to
tie the threads to the corresponding locality domain.

5.0 Results

We implemented the above scheme (for optimal
object placement) for two applications on a Tru64
system running FastVM JVM. The first application
was from a customer (part of the application) which
had lots of reads/writes to many objects that it
creates. Second is the SPEC java benchmark, called
Specjbb. Since currently there is no support from
Tru64 OS to place the objects in a given cell-local
partition (local to a CPU), we simulated the
condition by counting the accesses to a local cell
memory and to a non-local cell memory during
interpretation of the JVM. It was found to improve
application performance by 20% in case of SPECjbb
and around 12% for the customer application. We
plan to provide more detailed results during the
final poster presentation.

6.0 Conclusions and Future work
In this work, we presented schemes to place both
objects and generated code in JVM in an optimal
fasion on a CC-NUMA machine. These machines
scale well, however, they incur significant costs in
accessing non-local accesses. We presented the
results from these to show that such methods when
implemented for a large NUMA machines (like
Superdomes) can result in significant performance
improvement (especially for server-side Java
applications).
We are currently working on optimally placing the
code, C-heap structures also in the current
implementation. The C-heap structures are structures
malloced by JVM code itself. Since JVM also runs
significant part of the run-time of any Java
applications, the accesses made by JVM itself also
account for about 10-15% of times of the overall
accesses made by the Java process. So, placing
these optimally also has an effect on the
performance on a CC-NUMA machines. We are
using the similar schemes (of access patterns of
these structures to make decisions on the placement
on cells) to place these as well.

References
[1] Kim Hazelwood and James E. Smith. "Exploring Code Cache Eviction Granularities in Dynamic
Optimization Bruce Hendrickson and Robert LelSystems," Second Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO-04). Palo Alto, March 2004, pp. 89-99.)

[2] Bruce Hendrickson and Robert Lel, “A Multilevel Algorithm for Partitioning Graphs”, Bruce
Hendrickson and Robert Leland in Supercomputing '95.

[3] Bruno Blanchet. ”Escape Analysis: Correctness Proof, Implementation and Experimental Results” In
25th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL'98), pages
25-37, San Diego, California, January 1998.

[4] Jian Huang, et al, “Page-Mapping Techniques for CC-NUMA Multiprocessors », Intl. Conference
on Algorithms and Architectures for Parallel Processing, 1997.
[5] Kenneth Wilson and Bob Aglietti, “Dynamic Page Placement to improve locality in CC-NUMA
Multiprocessors for TPCC”, SuperComputing Conference, 2001.

[6] Mustafa Tikir, Jeffery Hollingsworth, “NUMA-Aware Java heap for Server Applications”, 19th IEEE
Intl. Parallel and Distributed Processing Symposium (IPDPS), 2005.

[7] Stefanos Kaxiras, James Goodman, “Improving CC-NUMA performance using Instruction-
based Prediction”, 5th Intl Symposium on High Performance Computer Architecture, 1999.

