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Abstract
Server-side Java applications are known to run for 
long time and to create lots of objects during their 
run. The memory access latencies on a CC-NUMA 
machine from cell-local memory to non-local 
memory differ in the order of 10. This means that 
access times for some data in local memory to a 
processor would be about 10 times faster than 
accessing data from a non-local memory (sitting 
local to other processor). This latency difference 
may have adverse effect on performance of java 
applications which create lots of objects and run for 
long time. The idea presented here is to optimally 
place these objects in local memories of different 
cells so that overall access times are reduced 
significantly. This has seen to improve the 
performance of the applications in the order of 20-
30% for some application like SPECjbbs.

Dynamic optimization systems like JVMs store 
optimized or translated code in software managed 
code caches in order to maximize use of 
native/optimized code. Code caches store dynamic 
compiler generated code fragments either at method 
level or at loop level. The code cache is allocated at 
runtime by the JVM, and as the methods are 
compiled, the generated code is placed in code 
caches, and is reused by threads which execute 
further calls to the method. In this work, we propose 
a dynamic compiler scheme for splitting the code 
buffer on a per locality domain, on the basis of the 
access patterns of these methods by the threads. We 
use the escape analysis information (as in which 
method escapes which thread) and the profile 
information to identify sets of methods to which 
certain threads have high affinity (in the sense that 
these methods are mostly executed by only those 
threads) and use the information to place the 
generated code for such methods in code buffer 
fragments on the same locality domain where those 
threads are scheduled. This is aimed at reducing the 
remote misses in accessing the code buffers by the 
threads which have strong affinity for the 
corresponding code buffer fragments.

1.0 Introduction
Large SMP systems are characterized with multiple 
locality domains. IBM has MCMs, HP has cells. The 
memory access latency is different within a locality 
domain versus between locality domains. There 
could even be different types of latencies between 
different levels of locality domains. A Superdome's 
single cabinet could have slightly lower latency 
compared to the other cabinet.

The time to access an object/code instruction in local 
memory of a cell could be in the order of 10 times 
lesser when compared to time to access an object in 
non-local memory. This may have adverse effect for 
Java-based applications, which create large number 
of objects (like memory intensive applications) and 
which run for long time (like server-based 
applications). For example, if a java thread T1, 
running on processor P1 in cell C1, access an object 
in memory of cell C2, most of the time, and this 
region of code happens to be one of the hotspots 
(that is program spends much time in this part of the 
code) of the application, then performance would 
degrade by an order of 5-10. If, however, we had 
placed this object in C2 in C1, before this hotspot 
begins to execute, the same could have run much 
efficiently due to lesser number of non-local access 
to memory. 

The idea presented here would describe a strategy 
which can be used to statically place these objects 
(during the start of the program) and eventually re-
distribute dynamically depending on the change of 
access patterns of these objects (from different 
threads), so that overall non-local accesses for the 
program is reduced to minimum. This would 
improve the performance of such server-side java 
application significantly.

Improving non-local access latencies in CC-NUMA 
architectures has been studied well by research 
community. Most adopt dynamic page placement for 
improving locality. This technique works very well 
transparent to the applications. However, these seen 
to work only for C/C++ based applications, which 



have regular access patterns, such as scientific 
applications. However, unlike such applications, 
java based applications tend to make extensive use 
of heap allocated memory and typically have 
significant pointer chasing code. Hence dynamic 
page placement techniques are known not to work 
well for these kinds of applications. Other known 
techniques are applicable for cluster-JVM (cJVMs)
which are designed for cluster machines. These 
techniques are not suitable for CC-NUMA due to the 
fact that latencies on a cluster system differ more 
than on CC-NUMA machines.

Optimizing programs for their efficient usage of 
memory has been well studied in literature. We 
would like to classify such work as C/C++ based and 
Java based, since the issues which are applicable to 
Java are unique. For example, C/C++ usually access 
the memory in a regular fashion (the locality of 
reference holds good most of the time). However, 
with Java, due to heap allocation and garbage 
collections, the access pattern may not follow any 
regular pattern and so techniques which work well 
for C/C++ may not work well for Java as well.

In [4], there is a discussion of various techniques of 
page mapping techniques, which are quite popular 
and have been implemented in many operating 
systems, including HPUX and others. These 
techniques are known to work well for C/C++ 
programs. These are transparent to the user as well.
[5] discusses a dynamic page placement technique, 
which decides the placement of pages on a cell and 
also migrating these as the access patterns change 
due to different behaviour of the program. The study 
was specifically done for TPCC, which is not Java 
based application. [7] discusses a technique, which 
is based on loads/store prefetching.

For Java, [6] gives a technique, where the authors 
have proposed to partition the java heap of a process 
to be placed on various nodes/cell of a CC-NUMA 
machine, whereby making the heap aware of NUMA 
behaviour. 

In the Java performance lab, we did several 
experiments to see whether the current known 
techniques work well for Java workloads. We ran 
Specjbb on a 64p (128c) machine, which has 16 cells 
each having 4 processors. We saw that the 
performance of the benchmark showed considerable 
improvement if we turn on the cell interleaved 
memory instead of cell local memory. Note also that 
the HPUX operating system has the page placement 

technique in the kernel. When we switched the 
interleaved memory the pages of heap were 
distributed evenly across all nodes in a round robin 
fashion and all cells accessed them on all the cells 
and no cell had a huge contention for memory 
accesses. However with cell local memory, we saw 
huge queues for updates for some busy part of the 
heap, which brought down the performance.

Further, all the prior techniques do not work well for 
long running applications, since they do not re-
distribute these objects as access patterns change 
during the course of the application run. We propose 
to change these placements as the application 
behavior change during its course. The other salient 
feature of our approach is the fact that we use the 
information that are anyway collected by JVM and 
we make the decisions of placement or re-
distribution of these objects during Garbage 
collections (GCs). We are also not aware of any 
work, which place the generated code by the virtual 
machine, in the code space, which would be 
accessed optimally across nodes.

The paper is organized as follows: The next section 
gives the scheme of placement of java objects 
optimally, section 3.0 explains the scheme to place 
the code onto the target machine. We give an 
example placement in section 4.0 and results in 5.0. 
Finally, we give some ideas on future work and 
conclude in section 6.0.

2.0 Optimal Placement of objects of a Java 
based application

The technique follows a two-phased approach. In the 
first phase, called, "Initial Placement Phase", we 
place the objects as they get created. In the second 
phase, we, on a need-basis, re-distribute these 
objects, depending on the current access patterns of 
the objects in the application. We will explain each 
phase in the following sections.
The initial placement phase, does the placement of 
objects into memory, by doing the static analysis. 
There are various schemes possible, but, we adopt 
simple scheme, called "creator-holds". This means 
that the thread which creates an object places the 
object in local memory of the processor on which it 
runs. For example, when a thread T1, running on 
processor P1, in cell C1, creates an object O1, O1 is 
placed in cell local memory of C1. The idea is that, 
since we do not know who will be accessing this 
object most of the time in future, now, we assume 



that T1 would be accessing this object most. 
However, if the access pattern changes, for 
example, if the thread T2 in cell C2 accesses this 
object most, then it makes sense to move this object 
O1 to C2. This is what is done during the second 
phase, which is "Redistribution" phase.
The Redistribution phase is dynamic in nature, in the 
sense that, the decision is based on the access pattern 
of objects as the application runs. Garbage collector 
(GC) is an important runtime component of the 
JVM, which runs every time when JVM is not able 
to allocate more objects. GC builds a graph of object 
references to each other and removes those objects 
which are dis-connected to the main graph (which 
has root nodes of the program). We re-use this 
information with a slight modification. When the 
GC builds such a graph, we also add a counter which 
registers the number of times the reference was 
made between two objects O1 and O2. This would 
give us "hotness" indicator for that reference.
Once such a graph is built, the second step is to 
search for partitions in this graph such that 
connectivity between these partitions are minimum. 
The graph partition is a NP-hard problem and there 
are many heuristic to solve this problem efficiently. 
We use the technique developed by [2]A Multilevel 
Algorithm for Partitioning Graphs by Bruce 
Hendrickson and Robert Leland in Supercomputing 
'95. This technique would do the partition of the 
graph into k-partitions such that total weight of links 
between the partitions is minimum. These k-
partitions correspond to k cells that are present in the 
machine. Once we place these objects according to 
the partitions we obtain, we would be minimal non-
local access placement at that time.
The last step is to check for benefit of re-
distribution at the current stage. Though the above 
algorithm gives us a new partition, we need to check 
whether it would really benefit to do the re-
distribution now. This is done by a heuristic. A 
simple heuristic that we use is to check whether the 
number of movements that are required is less than 
20% of the number of objects.  If yes, then we do not 
think its worth the effort to re-distribute. We see 
that, with this heuristic, we do not re-distribute 
during most of the GCs, which is good, since these 
redistributions would be a big overhead, if done 
repeatedly.

3.0 Optimal Placement of dynamic code in 
JVMs

Code is generated in much smaller snippets and its 
access patterns can be determined by the run time 
environment. For instance, in a multi-threaded 
program, different threads may be doing different 
work and so be working with different Java 
methods. In these cases, we can generate code with 
closer locality to methods generated for a thread. 
Even if we do nothing else and the total code needed 
by a thread falls in its own set of virtual pages, the 
OS can locate those pages into physical memory 
closest to the processor on which the corresponding 
threads are running.
But a further optimization would be to break the 
code buffer into multiple pieces, each corresponding 
to a thread, and maybe a common area. Then the 
code is generated into each such piece and placed 
inside individual (Cell Local Memory) CLMs. In 
Java virtual machines, the compiler generated code 
is maintained in a separate software managed code 
cache. The management of code cache in order to 
reduce memory latencies by cache misses is an 
important factor in improving the overall 
performance of the JVM.
In general, “escape analysis”[3] information is 
gathered by the compiler in order to recognize which 
objects can be allocated on the stack instead of on 
the heap. Escape analysis gives for each thread, what 
are the set of methods that do not escape the thread. 
This means those methods which are executed only 
by this thread. We use this information to divide the 
set of hot methods into different partitions such that 
each partition consists of a set of methods and a set 
of threads such that each method falls into the non-
escape set of the thread. We use the online profile 
information to find the methods which suffer from 
remote memory misses in their code cache accesses. 
This information is fed back to the JVM such that 
the hotspot compiler can allocate the code cache for 
each set of methods such that the methods are 
mapped on to the same locality domain where the 
threads can be scheduled. This information is also 
outputted to the programmer as an advice so that if 
the programmer desires, he can use the pset calls to 
tie the threads to the corresponding locality domain.



5.0 Results

We implemented the above scheme (for optimal 
object placement) for two applications on a Tru64 
system running FastVM JVM. The first application 
was from a customer (part of the application) which 
had lots of reads/writes to many objects that it 
creates. Second is the SPEC java benchmark, called 
Specjbb. Since currently there is no support from 
Tru64 OS to place the objects in a given cell-local 
partition (local to a CPU), we simulated the 
condition by counting the accesses to a local cell 
memory and to a non-local cell memory during 
interpretation of the JVM. It  was found to improve 
application performance by 20% in case of SPECjbb 
and around 12% for the customer application. We 
plan to provide more detailed results during the 
final poster presentation.

6.0 Conclusions and Future work
In this work, we presented schemes to place both 
objects and generated code in JVM in an optimal 
fasion on a CC-NUMA machine. These machines 
scale well, however, they incur significant costs in 
accessing non-local accesses. We presented the 
results from these to show that such methods when 
implemented for a large NUMA machines (like 
Superdomes) can result in significant performance 
improvement (especially for server-side Java 
applications).
We are currently working on optimally placing the 
code, C-heap structures also in the current 
implementation. The C-heap structures are structures 
malloced by JVM code itself. Since JVM also runs 
significant part of the run-time of any Java 
applications, the accesses made by JVM itself also 
account for about 10-15% of times of the overall 
accesses made by the Java process.  So, placing 
these optimally also has an effect on the 
performance on a CC-NUMA machines. We are 
using the similar schemes (of access patterns of 
these structures to make decisions on the placement 
on cells) to place these as well.
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