
1

Mounting of Version Control Repositories
RepoFS

Prashanth Mohan and Aanjhan R
{prashmohan, aanjhan}@gmail.com

Abstract— Version Control Repositories are run aplenty on the
Internet. The clients for these VCS are often plagued with cryptic
commands and access methods. Many of them also lack simple
and intuitive user interfaces.

This project aims to provide an easy to use mechanism
of mounting any remote version control repository to a local
directory. Thereby the usual UNIX commands and access mech-
anism can be used on the remote files. All File System calls
are appropriately converted into the corresponding versioning
functions.

Index Terms— File System, Version Control System

I. I NTRODUCTION

M OUNTING of a Version Control System holds many
advantages to the common user. If one was to work on

such a File System, all his work is automatically versioned.It
is also of importance to developers who will be able to easily
access repository files. Access to the repository files is made
extremely easy. Some of the advantages of such a mounted
Version Control Repository are:

• No need to specify the Version Control System type since
it is determined dynamically based on the URL being
mounted

• Ubiquitous access. All applications will be able to access
the files directly from the repository, instead of only the
VCS clients

• Implicit Versioning. Each modification of the file will be
recorded in the version control repository

• Pluggable architecture. More modules supporting other
VCS can be added at a later point of time

• Files copied and removed from the mount point is auto-
matically translated in the version repository.

• Effective alternative to a Versioning File System

II. OVERVIEW

A. Version Control System

In today’s world of commercial projects, Version or Re-
vision Control [1] of source code is considered an essential
Quality Management task. Especially in the Open Source
world where contributions are made by numerous volunteers
spread across the world, versioning of source code is indis-
pensable. Version Control software provide various features
like branches, tagging, locking, merging, conflict resolution,
etc. Some advanced File Systems like ZFS, Wayback, ext3cow,
etc provide for file versioning inherently, however, the topic of

open()

read()

write()

RepoFS

 Remote repos
(svn, cvs, git, bzr..)

Fig. 1. Design of RepoFS

our discussion would be centralized version control reposito-
ries where, the version information itself is stored on a remote
server.

There are many Version Control Systems1 like CVS,
Subversion, Bazaar, Arch, Git, etc. Each one has evolved to
address the limitations of the other.

B. File System Based VCS

Mounting of Version Control Systems (henceforth called
VCS) provide numerous advantages to the lay user. There exist
some solutions for mounting CVS repositories on a local di-
rectory [2]–[4]. Most of these solutions however provide only
read-only access to the files. The advantages of a file system
mounted versioning repository is the transparent mechanism
for accessing its files. Another advantage of such a system
is that the whole set of files need not be downloaded, but
only those files which are read need to be downloaded from
the repository [3]. This would have excellent implicationsin
conditions where bandwidth is at a premium.

III. D ESIGN

The basic idea behind any User Level File System is that,
the system calls that we access from our programs are nothing
but glibc calls . By re-defining the behavior of these glibc
calls, we can mount a File System from user space. Note in
figure 1 that the kernel does not play any role. Some of the
implementations which use this idea are Translators and FUSE
(Refer§IV-A)

1http://en.wikipedia.org/wiki/Listof revision control software

User Process

glibc

VFS

FUSE

glibc

CVS

SVNGit

Arch

Local
Cache

User Space

Kernel

.

.

..

Ext3

libfuse

RepoFS

Fig. 2. Architecture of RepoFS using FUSE library

A. Plugin based Version System

The proposed RepoFS is designed to be generic and capable
of mounting any kind of VCS. The logic and code for the
respective VCSs will be defined in a plugin. The project itself
will provide a framework for choosing the right plugin from
the available choices and then register the appropriate call
backs. The duty of RepoFS is to:

1) Identify the system which defines the repository being
mounted

2) Check if the appropriate plugin is available (Offline or
Online)

3) If it is available, then register the appropriate functions
from the plugin for the file system access calls (Re-
fer §IV-B). Read basic repository information, like the
listing of the parent directory, so that the size of the
mounted directory can be determined.

4) If the plugin is not available, attempt to download from
the network and install (since everything is in user
space). If the plugin is still not available report that the
File System type is not supported and exit

B. Virtual Directories

Each time a repository is checked out, one would notice
that there is an accompanying directory or file (one or more)
along with the checked out source code, which is not actually
part of the files under version control. This directory holdsthe
revision information of the individual files and directories of
the working copy. When we try to look at an online repository
as an extension of a file system, this directory no longer holds
any relevance.

We will reuse this directory to hold the meta data of the
working copy. This will provide the backbone for other VCS

commands like ‘diff’, ‘ status’, etc. This directory will
not exist physically, i.e. it will be a Virtual Directory [1],
[5]. If suppose the user is creating a tarball of the mounted
repository, then it is illogical that this virtual directory be part
of the tarball. Hence, this directory will not be shown during
a directory listing. However, the directory can be accessedby
the chdir call. A similar virtual directory will exist for each
subsequent subdirectory holding its own revision information.

There are various on on-disk File Systems like ext2, ext3,
reiserfs, JFS, XFS, etc and there are memory based File
Systems like procfs and devfs. The Virtual Directories will
be a melange of the two implementation methods.

Let us take the case of an SVN (subversion repository) and
work by using the ‘.svn’ virtual directory as example.

1) versions: The different versions of the files are
listed inside the directory called ‘versions’ and a sub-
directory of the same name as the file itself. i.e.
‘<mnt-point>/.svn/versions/<file-name>’ will
list the different versions of the file based on the version
number.

2) status: The ‘status’ of a working copy of the
code will specify the details about which files have
been modified, etc. This should be accessible by
‘<mnt-point>/.svn/status’.

3) log: The ‘log’ command usually provides information
about who made changes to the files, the accompanying
messages and the revision numbers. Because there are 2 ways
of invoking the ‘log’ command; either on the directory or on
the file.

• <mnt-point>/.svn/.log will be the alias of the
‘svn log’ command which will provide the summary
log of all the files.

• <mnt-point>/.svn/log/<file-name> will be
the alias of the ‘svn log <file-name>’ command
which will show the log corresponding to that particular
file.

4) diff: The ‘diff’ command like the ‘diff’ utility shows
how a file has changed over time. Similar to how the ‘log’
command was featured, the ‘diff’ command be accessed from
the File System as follows:

• <mnt-point>/.svn/.diff will be the alias of run-
ning the ‘svn diff’ on the directory.

• <mnt-point>/.svn/diff/<file-name> will be
the alias of running the ‘svn diff <file-name>’
command.

The diff itself is only a diff between the local version of the
file and the HEAD version of the file. To get a diff between
the different versions of the file, theGNU diff tool can be
used to generate the diff between different versions of the file
as mentioned in§III-B.1

C. Net File Sysntem

In order to access the network (which is essential to access
the repository), we require that the File System driver be
available in the user space. Hurd also provides alibnetfswhich
is used to provide some very commonly used network tasks.

The Hurd Extras page2 and the FUSE home page list a number
of file systems which use the Internet for its functioning. Some
of them are SSHFS, FTPFS, etc. The Network File System
(NFS) also uses similar concepts.

IV. I MPLEMENTATION DETAILS

The file system is to be implemented in user-space, and
there are many host Operating Systems on which this could
be built on. We will look at the ‘GNU/Hurd’ and ‘Linux’
implementations, both of which are available in the Open
Source domain.

The GNU/Hurd [7] Operating System is a micro kernel
approach which uses the Mach3 kernel. This OS is still largely
a research OS and has not been adopted in the mainstream
market. However, for our project we will choose to implement
on top of the GNU/Hurd platform largely because of the power
and flexibility that Translators (Refer§IV-A.2) provide us and
the elegance of the micro kernel design. The Microkernel
design also lets us stick to the architecture as defined in figure
1.

Linux on the other hand is an Operating System which is
being increasingly adopted in both the server and the desktop
markets. However, the monolithic nature of the kernel has
caused some shortcomings. The FUSE (File Systems in User
Space) project has been initiated to create an API for easy
creating of User Space File Systems. The FUSE library is
known to run on the Linux-2.4.x, Linux-2.6.x kernels and on
FreeBSD. Work is also on to port the FUSE library to Hurd.

A. Libraries

1) FUSE: The FUSE4 library has language bindings for
many Object Oriented Languages including C++, Python, etc
making development using FUSE modular and maintainable.
FUSE works by accessing a kernel module through the VFS
(See figure2). However, the user level file systems will only
access libfuse API.

2) Translators: Translators [6] are user processes attached
to a local inode. The translator process can be thought to
define the access methods for the local directory or file.
Translators also include Network Translators, Symbolic Links,
etc. However in our discussion here, we will restrict ourselves
to Translators acting as File System drivers. The translator
behaves likes a file or a directory depending on the command
accessing it.

An active translator is a translator process attached to
an inode and is currently in execution. Whereas, a passive
translator is a translator which is attached to a local inode
but is not in execution. Passive translators also have the
additional advantage of being attached to an inode across
multiple reboots of the machine. Hence, a configuration file or
a mount on each reboot is not required. This is the required
behavior of our File System since the user needn’t be bothered
about remounting the repository on each reboot.

2http://www.nongnu.org/hurdextras/
3http://en.wikipedia.org/wiki/Machmicrokernel
4http://fuse.sourceforge.net/

B. Access Mechanisms

The following file system mechanisms will be mapped
to appropriate VCS mechanisms. We describe here a very
abstract mechanism of how the function calls are supposed
to behave. The behavior for independent systems will need to
be defined separately.

1) creat(): Once a file is added to this mounted directory,
now comes another decision point whether to reflect the
addition on the repository or only update the local cache. For
our project, we choose to reflect the additions on the main
repository. We would typically to map the creat() call into a
mix of ‘add’ and ‘prop’ commands. However, if the repository
was to be mounted read-only (or in the case of the user
not having commit access), then the creat() call would return
an error for the lack of sufficient permissions. The directory
holding the files would not have write permissions.

2) remove():This is a more controversial call compared to
the previous one since this could lead to potential data loss.
However, since this is a versioning repository, the intensity of
the loss would be slightly lesser. We choose to reflect the local
changes on the main repository as in creat() call. Once again,
if the user is mounting the repository in read-only mode or
has insufficient permissions, this call will return an error.

3) readdir(): This system call should merely list the files in
a given directory of the repository without actually download-
ing (checking out) the files to the local machine. A listing of
the directory along with the file properties might or might not
require a checkout of all the files. CVS requires the complete
checkout of the directory and calculating the meta-data locally,
whereas, SVN allows theproplist command which will list
the file properties.

4) open(): This should increase the reference count of the
file locally. However, the check out of the file is not done yet.
This function will only check if the file exists in the repository.
If it does not exist, it will return an error else, it will maintain
a local reference count.

5) read(): This is the function call which will actually
cause the downloading of the file to the local machine (unlike
open()). The first call of read() will initiate the checkout of
the file. Subsequent calls of read() will merely read it from
the local cache. A time out value is associated with the read
command. In case the network is down or the file cannot be
retrieved, this function call should return an error.

6) readattr()/setattr(): These permission/attribute are cre-
ated locally first. In case the upstream system allows for
these attributes to be reflected, then it is committed during
unmount of the File System. SVN for instance supports
these calls using thepropdel, propedit, proplist,
propset commands.

7) write(): A repository may be mounted either read only or
read write. This depends on the privileges of the user account.
If an anonymous account or any other read only account is
used to mount the File System, then the function calls to write
will return an error.

However, if the repository is mounted by a user with full
write permissions, then the write function will cause changes
to be made to the local cache. The changes will not be made

upstream i.e. it will not be committed immediately. The new
data of the file is maintained in cache.

Different Implementations of the CVS File System choose
different approaches to the write problem. The most prevalent
method has been to mount the repository as a Read Only file
system [2], [3]. We will have to maintain a diff of the current
file with the upstream copy.

8) close():This is probably the most controversial of all the
calls. We will have to make sure that there are no conflicts.
In case of a conflict, the close call has 2 alternatives. It could
either reflect the conflicts on the local cache of the file or it
could simply return an error and require that the file system
be remounted.

If the reference count is more than 1, it means that the
cache of the same file is being accessed more than once at
the same time. Now, if the file contents is modified out of
the open process, it could cause a problem. Most intelligent
editors like Emacs, will detect that the cache has changed and
prompt the user to refresh the buffer. So, the former approach
will be taken and the conflicts will be reflected on the local
cache of the file. This might require that the upstream copy
of the file be checked out again and the diff produced locally.

V. EXISTING WORKS

There have been implementations of a few of the above pre-
sented ideas. Stefan Siegl [3] has created an implementation of
the CVS File System using GNU/Hurd Translators. There have
also been some implementations of mounting CVS repositories
as File Systems using the FUSE libraries [4], However almost
all the implementations are plagued by one severe constraint
– which is the handling of writes to the repository. Another
shortcoming of the current solutions is that, they only offer
support for the CVS system, and do not provide support for
mounting a generic Version Control System.

VI. CONCLUSION

RepoFS provides a scalable and extendable architecture for
mounting of Version Control Systems as a local File System.
RepoFS will support not just one Version Control System but
multiple Systems. It will be able to automatically update itself
and download the required plugins for supporting new systems
because it is entirely in User Space. RepoFS also provides for
a well structured policy for managing mappings between File
System calls and the corresponding functions in the Version
Control Systems.

REFERENCES

[1] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato,Version Control
with Subversion. O’Reilly Publications, 2004. [Online]. Available:
www.svnbook.red-bean.com

[2] J. R. Nogueras, P. A. Portante, and W. Shi, “Presentationof a cvs
repository as an sfs read-only file system,” Master’s thesis, Massachusetts
Institute of Technology, December 2000.

[3] S. Siegl,Virtual CVS filesystem translator for the GNU Hurd. [Online].
Available: www.nongnu.org/hurdextras/

[4] P. Frank and L. Strojny,CVS virtual file system. [Online]. Available:
www.sourceforge.net/projects/cvsfs/

[5] R. Pike, D. Presotto, and S. D. et al, “Plan 9 from bell labs,” AT & T
Bell Laboratories, Murray Hill, NJ, Tech. Rep., 1995.

[6] Debian. (2006) Translators. [Online]. Available:
www.debian.org/ports/hurd/hurd-doc-translator

[7] M. I. Bushnell. (1994) The hurd: Towards a new strategy ofos design.
[Online]. Available: www.gnu.org/software/hurd/hurd.html

www.svnbook.red-bean.com
www.nongnu.org/hurdextras/
www.sourceforge.net/projects/cvsfs/
www.debian.org/ports/hurd/hurd-doc-translator
www.gnu.org/software/hurd/hurd.html

	Introduction
	Overview
	Version Control System
	File System Based VCS

	Design
	Plugin based Version System
	Virtual Directories
	versions
	status
	log
	diff

	Net File Sysntem

	Implementation Details
	Libraries
	FUSE
	Translators

	Access Mechanisms
	creat()
	remove()
	readdir()
	open()
	read()
	readattr()/setattr()
	write()
	close()

	Existing Works
	Conclusion
	References

