

1

Abstract—Small offices/home offices have storage and pr int
requirements that are very hard to fulfill. They require that the
methods used are both economical and efficient. Network pr inters
can be very expensive, and to provide a pr int server for a small
network (say 15 stations) is also not economically viable. On the
same lines, providing specialized network-attached storage
devices too is an expensive option. We aim to solve this problem,
by providing a cost-effective, yet efficient solution for storage and
pr int requirements for SOHOs by making efficient use of the
IXP425 Network Processor . Internet SCSI (iSCSI) is an official
standard that allows the use of SCSI over TCP/IP networks. The
recent shift to gigabit ethernet has seen a rapid acceleration in the
usage of the iSCSI protocol. Although iSCSI has predominantly
seen use in Storage-Area Networks (SANs), nothing in its
architecture prevents its use in other devices. We exploit this
device independent nature of iSCSI, and that which is seen
inherently in SCSI, by providing both storage and pr int solutions,
with the same back bone architecture. We also provide host
independent pr inting, which is to say that, we provide a medium
for pr inting directly without the intervention of a host machine.
We use a network processor (IXP425) to implement the solution
effectively, making use of its inherent support of networking
features, so that we can provide an efficient solution to the task at
hand.

Index Terms—iSCSI, IXP425, pr int, small office/home office,
storage

I. INTRODUCTION

VER the years, storage architectures have seen flavors
such as SANs and NASs. These solutions though feasible

and proved, are not suitable for a Small Office/Home Office
environment. Similarly, print solutions such as print servers,
referring to simplistic designs such as LAN adapters with
parallel ports to specialized routers attached to printers that
implement networking protocols are also not suitable for such
environments. Effective storage and print solutions for SOHOs
must meet the following targets,

a) The network-attached storage device must integrate

seamlessly over a network of stations running modern day
commodity OSs.

b) The network-attached printer device must appear as a
directly attached printer device to the host

c) Enable host independent printing service, that is, to be
able to print directly without out the intervention of a host
machine.

In designing the device, it is required that the protocol
employed should be device independent in order to make the
end product generalized, as well as extensible. SCSI is widely
known to be a standard that promotes device independence,
which means that SCSI can be used with any type of computer
hardware. In order to extend this over a network, we build an
iSCSI stack over the network processor device.

 iSCSI is touted to be a de-facto standard for such purposes.
Using iSCSI also has the additional advantage that many
implementations of iSCSI initiators for modern day
commodity OSs already exist, thus making the device
universal. Added with the fact that once we've provided an
iSCSI target on the network processor board we will be able to
attach other SCSI devices, and provide network access to them
too. So in essence we have a network based adapter to a SCSI
device.

The device also features host independent printing, that is,
the ability to print from a directly connected flash device,
without the intervention of a host machine.

II. RELATED WORK

A. Contemporary Print Systems

There are many popular solutions for network-based
printing. The Internet Printing Protocol or IPP is a standard
printing protocol. IPP, similar to most IP based protocols can
be used over the Internet. However, since it is built over
HTTP, it makes for a more complex and bloated protocol. We
judged this unfit for a small office/home office environment as
the compromise on performance, due to a taller protocol stack
is not justifiable [8].

A print server is a host computer or device that can accept
print jobs over a network of stations connected to it. To have a
dedicated host machine for a print server is not an
economically sound solution. Instead, having an embedded
device providing the same interface and functionality is
preferred. We try to justify this with our device.

Storage and Print Solutions for SOHOs

Rajiv Mathews, Ravi Shankar T, Sriram P, Ranjani Parthasarathi
Department Of Computer Science & Engineering, College Of Engineering, Guindy, Anna University,

Chennai, India

O

2

B. Contemporary Storage Systems

Storage Area Networks (SANs) and Network-Attached
Storage Devices (NASs) have existed for nearly a decade now.

A Storage Area Network is a network designed to attach
computer storage devices such as disk array controllers and
tape libraries to servers. A SAN allows a machine to connect
to remote targets such as disks and tape drives on a network
for block level I/O. There are two variations of SANs,

1) A network whose primary purpose is the transfer of data
between computer systems and storage elements. A SAN
consists of a communication infrastructure, which provides
physical connections, and a management layer, which
organizes the connections, storage elements, and computer
systems so that data transfer is secure and robust. The term
SAN is usually (but not necessarily) identified with block I/O
services rather than file access services.

2) A storage system consisting of storage elements, storage
devices, computer systems, and/or appliances, plus all control
software, communicating over a network.

Network-Attached Storage (NAS) is the name given to
dedicated data storage technology that can be connected
directly to a computer network to provide centralized data
access and storage to heterogeneous network clients. NAS uses
file-based protocols such as the Network File System (NFS)
(popular on UNIX systems) or Common Internet File System
(CIFS) (used with MS Windows systems). Contrast NAS's file-
based approach and use of well-understood protocols with
storage area network (SAN) which uses a block-based
approach and generally runs over proprietary protocols.

For a small office/home office environment a NAS like
architecture is best suited since it blends performance with cost
[4].

III. PROPOSED SOLUTION

Our solution merges the best features of those that are
available in literature, in that it provides network access to a
centralized storage along with centralized printing capability.
With regard to the storage solution that it provides, it emulates
a directly-attached storage device by making use of iSCSI. It
also extends the principle of iSCSI, which is typically
understood to be for storage systems to print systems too [1].

The IXP425 board is the ideal environment to host an iSCSI
target on. It provides major networking capabilities that are
required for this purpose. For instance, it inherently supports
several security features, its network processing engines export
common networking functions to hardware and it provides a
balance between efficiency and cost, which are critical for
SOHOs.

A. Target Software Features

The iSCSI target software, which is housed on the network
processor, must adhere to certain basic principles that we

identified [3,6].
a) Kernel Modification is to be kept at a bare minimum.

Modifying the source code of the Linux kernel, which is not
specialized, may lead to better performance. This may
however cause compatibility issues with newer versions of the
kernel.

b) Maintain interoperability with existing systems. The
success of a device like ours depends to a large extent on the
interoperability that it provides with existing systems.

c) Utilize existing device management features. For
instance, the storage solution that we provide must utilize disk
management features like the logical volume manager (LVM),
as is provided in the Linux kernel.

d) Meet production environment performance standards.
The device should meet the workloads of a typical SOHO
production environment. The target software serves a dual
purpose. It interacts with both a printer subsystem and a
storage subsystem. The target software is responsible for
classifying incoming requests into these two major categories.

B. Storage Subsystem

While dealing with the storage subsystem, several design
options have been identified. [3] With respect to the kernel
interface with which the storage subsystem interacts we
consider the following design alternatives (Figure 1).

a) Directly with the SCSI subsystem, meaning to work
directly with the device.

b) At the block I/O layer, thereby providing to the initiator
devices, blocks as logical units.

c) With the virtual file system and hence provide a regular
file as the logical unit.

Fig. 1. Layers of accessibility in the kernel

Working with the SCSI subsystem or the block I/O layer

would keep us from taking advantage of the rich functionality
that the kernel could other wise provide us.

The virtual file system is chosen, to keep the design simple
and to work with as many high level interfaces as possible [5].
It provides us with several advantages,

a) This method provides us the advantage of device

3

virtualization. The Linux kernel provides a generic interface to
various block devices, allowing homogeneous access to all
block devices like SCSI, IDE, ATA disk drives.

b) Working at this level of abstraction also allows us to
make use of the page cache, which minimizes disk I/O latency.

c) Also, it allows us to make use of flexible storage
management, logical volume manager, and redundancy
(Software RAID).

Write Durability is a feature that database programs and file
systems rely on in order to maintain data integrity in case
system failures. It means that when an initiator device receives
a response from the target on a write, it expects that the data
has been written to the physical disk drive.

C. Printer Subsystem

The printer subsystem is a far more simplified module. The
aim of the device with respect to the service of printing was
that the printer must appear to be directly attached, rather than
a network-attached printer. The initiator concerns itself only
with the task of packaging SCSI Command Descriptor Blocks
(CDBs) within iSCSI PDUs for transfer over a network to the
target. The target will forward printer commands to the printer
subsystem. Thus the host machine assumes that the printer is
directly connected, due to the fact that the initiator subsystem
falls below the SCSI mid layer on the host machines.

Fig. 2 Printer Architecture Comparison

The left pane shows a standard SCSI printer set up. The right pane shows the
SCSI mid layer expanded to transparently include the network.

So the network is transparent to the host machines since it

falls logically within the SCSI mid layer. To summarize, the
target software will forward CDBs destined to the printer, to
the printer subsystem which in turn will simply forward these
to the SCSI mid layer at the target.

IV. WORK IN PROGRESS

We are working with the Intel IXP425 Network Processor
which is a versatile and highly integrated single-chip processor

that is suited for high performance network-based applications
[7]. The IXP425 combines an Intel XScale core with
additional Network Processing Engines (NPEs) to achieve
wire-speed packet processing performance. The network
processing engines are used to offload computationally
intensive data plane operations like IP header inspection and
modification, packet filtering and error checking, checksum
computation and flag insertion and removal. The NPEs have
hardware elements each of which are specialized to increase a
specific networking task.

The network processor will run a SnapGear Linux
distribution operating on a Linux 2.6 kernel. SnapGear is an
embedded Linux distribution that represents Linux technology
for embedded microprocessors with or without MMUs.

The iSCSI target software that is housed in the network
processor is divided into three major blocks.

a) Read thread: This thread will receive requests from the
various initiator devices.

b) Process block: This block will process the requests,
determine the nature of the requests, act on the request and
formulate a response.

c) Write thread: This thread will respond to the appropriate
 initiator device.

Fig. 3 Architectural Overview

Incoming requests are buffered in the ‘ Incoming Queue’ , which leads to the
process thread. The process thread performs the necessary operation and
writes out to the ‘Outgoing Queue’ .

The read thread passes to the process block, the SCSI CDB

that it has extracted from the received iSCSI PDU. Incoming
requests are picked up by this thread and after stripping out the
protocol headers is deposited on the ‘ Incoming Queue’ .

The process block has three logical units. The classifier
classifies incoming packets into two flows; those which are
destined to the storage device and those to the printer device.
The flow that is intended for the printer device is led to the
Printer I/O thread, and those for the storage device, to the Disk
I/O thread, as shown in Figure 4.

The classifier based on the Operation Code of the SCSI
CDB determines which flow a particular incoming packet falls

4

into [2]. The classifier interacts with both the Disk I/O thread
and the Print I/O thread.

We work with the virtual file system, so as to benefit from
all the abstractions that the Linux kernel provides us. So in this
scheme, a traditional file stored on the file system, is the
logical unit (LU) that is projected to the initiator.

Fig. 4 Design Pipeline

This scheme gives us the freedom to use any kind of

hardware for the storage device. This device independence is
possible due to high level of abstraction that the virtual file
system guarantees us.

The Printer I/O Thread will receive SCSI CDBs that it sends
directly to the SCSI Mid Layer. By doing so it simply emulates
a directly connected SCSI printer device. iSCSI gives us the
benefit of extending it seamlessly over a network. Thus all
hosts whose initiators are configured view the printer as a
directly attached printer device. The printer I/O thread
interacts with the SCSI Mid Layer of the kernel. This way we
only interact with the kernel never actually modifying
modules, thus preserving the ability to work with newer
kernels. Maintaining interoperability with newer kernel
versions was an important design goal. The device currently
works with SCSI printers.

Another feature that the device provides is host independent
printing. As mentioned earlier, this provides a direct printing
service from a USB flash device, without the intervention of a
host machine. The IXP425 is typically suited for such
embedded applications. The IXP425 provides a USB 1.0 port,
which along with the USB Mass Storage Class drivers that are
provided by the Linux 2.6 kernel enables us to provide such a
service. Here it must be noted that the Linux 2.6 kernel tree by
it self supports several file systems, nearly 20 officially. This is
important to such a device because it enables us to detect and
mount several different kinds of file systems. USB Flash
devices are typically formatted using the FAT 32 file system,
but by using the kernel functionality we aren't limited by that.

As for host independent printing, we provide two options,
a) Either locate meta-data that is present on the flash device

that provides information on the files on the flash device that
are to be printed. We call this “selective” printing.

b) Or print all the files that are present on the flash device,

we call this “dump” printing.
When the USB flash device is detected by the kernel, it

spawns a process that handles this task. The process scans
through the root directory of the file system of the flash disk,
looking for the meta-data file.

V. FUTURE WORK

A. Printer Subsystem

The current design supports only SCSI printers as it only
extracts the SCSI CDBs from the iSCSI PDUs and passes it on
to the SCSI mid layer that interacts with the printer. A better
and more generalized solution would be to extend this idea to
make it work for other types of printers too. This would
require the presence of another abstraction layer that will map
the SCSI commands set to the appropriate target command set.

B. Storage Subsystem

The high level abstractions that are used and the rich
functionality that the kernel provides makes the storage system
very extensible. Some of the intended future work includes

a) Building an Object Store Drive [9]. An object store drive
is a storage device that manages space in terms of objects and
offsets within objects rather than logical block
addresses(LBA). OSDs are primarily targeted towards shared
storage and shared-something multiprocessors architectures.
Such systems need high speed devices that work over the
network and a network processor based implementation such
as ours would be the best-suited for such scenarios.

b) Increasing reliability and bandwidth by accommodating
RAID based storage solutions on the device.

VI. CONCLUSION

Our device holds much promise. Its high flexibility,
portability, and simplicity make it a general solution to
existing problems faced in small office/home office
environments. The centralized storage and printing concept
increases data management and device utilization which bring
down costs. We have designed it to be extensible so that future
improvements in storage and print technologies can be
incorporated with minimal effort. Usage of the IXP425
Network Processor makes for a cost-effective and efficient
implementation that provides high levels of performance.
Host independent printing facilitates printer utilization without
machine intervention.

5

REFERENCES

[1] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner,
“ Internet Small Computer Systems Interface (iSCSI),” April 2004, RFC
3720.

[2] M. Chadlapaka, R. Elliott, “Small Computer Systems Interface(SCSI)
Command Ordering Considerations with iSCSI” , May 2004, RFC 3783

[3] F. Tomonori and O. Masanori, “Analysis of iSCSI Target Software” .
[4] P. Radkov, L. Yin, P. Goyal, and P. Sarkar, “A Performance

Comparison of NFS and iSCSI for IP-Networked Storage,” in the
USENIX Conference on File and Storage Technologies, San Francisco,
CA, March 2004, pp. 101-114.

[5] A. Palekar, N. Ganapathy, A. Chadda, and R. D. Russell, “Design and
implementation of a Linux SCSI target for storage area networks,” in the
5th Annual Linux Showcase & Conference. Atlanta, GA: USENIX,
November 2001.

[6] K. Z. Meth, J. Satran , “Design of the iSCSI Protocol,” in the Mass
Storage Systems and Technologies, 2003, proceedings 20th IEEE/11th
NASA Goddard Conference, April 2003, pp. 116-122.

[7] P. Barry, and G. Hartnett, “Designing Embedded Networking
Applications,” , Intel Press, May 2005.

[8] R. Herriot, S. Butler, P. Moore, R. Turner, “ Internet Printing
Protocol/1.0; Encoding and Transport” ., April 1999, RFC 2565

[9] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor , N. Rinetzky, O.
Rodeh, J. Satran, A. Tavory, L. Yerushalmi, “Towards an Object
Store,” in the Mass Storage Systems and Technologies, 2003,
proceedings 20th IEEE/11th NASA Goddard Conference, April 2003,
pp. 165-176.

