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Progress in HPC - past 6 decades

ENIACS – 1945

• 100 K Hz

• 5 K Additions/second

• 357 Multiplications/second

IBM Blue Gene/L

• CPU power increasing by a 
factor of 30-100 every decade

• Multi-Giga Hz, multi-
Gigabyte, multi-core CPUs are 
commodity

• Teraflops computers are 
common

• Petaflops scale computing 
within reach

Jaguar - Cray XT4/XT3 - Oak Ridge 
National Laboratory

EKA (HP Cluster Platform 3000BL) -
Computational Research 

Laboratories
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Applications Drive the Technology

“I think there is world market for maybe 5 computers”

- Thomas Watson Sr.

Scientific Computing Data Driven Computing
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Data Mining - A Driver for High-Performance Computing

Lots of data being collected in 
commercial and scientific world
Strong competitive pressure to 
extract and use the information 
from the data
Scaling of data mining to large data 
requires HPC
Data and/or computational 
resources needed 
for analysis are often distributed
Sometimes the choice is distributed 
data mining or no data mining

– Ownership, privacy, security 
issues

INTERNET

network

network network
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Origins of Data Mining

Draws ideas from machine learning/AI, pattern 
recognition, statistics, and database systems
Traditional techniques may be unsuitable due to 
data that is
– Large-scale
– High dimensional
– Heterogeneous
– Complex
– Distributed
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Data Mining Tasks

Tid Refund Marital 
Status 

Taxable 
Income Cheat

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 

11 No Married 60K No 

12 Yes Divorced 220K No 

13 No Single 85K Yes 

14 No Married 75K No 

15 No Single 90K Yes 
10 

 

Predictive Modeling
Clustering

Association 

Rules

Anomaly 
Detection

Data
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Basic Operations in many Data Mining Kernels

Counting 
– Given a set of data records, count types of different categories to 

build a contingency table Count the occurrence of a set of items
in a set of transactions

Distance/Similarity Computations 
– Given a set of data records, perform distance/similarity 

computations

Linear Algebra operations
– SVD, PCA, etc
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General Issues and Challenges in Parallel Data Mining

Dense vs. Sparse

Structured versus Unstructured

Static vs. Dynamic

Many data mining computations tend to be unstructured, sparse and dynamic
– Data is often too large to fit in main memory
– Spatial locality is critical
– Many efficient DM algorithms require fast access to large hash tables 
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Are Data Mining applications similar to other workloads?

Performance metrics of several benchmarks gathered from Vtune
• Cache miss ratios, Bus usage, Page faults etc. 

Benchmark applications were grouped using Kohenen clustering to spot 
trends:
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Science Goal: Understand global scale patterns in biosphere 
processes

Earth Science Questions:
– When and where do ecological disasters occur?
– What is the scale and location of human-induced land 

cover change and its impact?
– How are ocean, atmosphere and land processes 

coupled?

Data sources:
– Weather observation stations

– High-resolution EOS satellites
1982-2000 AVHRR at 1° x 1° resolution (~115kmx115km)

2000-present MODIS at 250m x 250m resolution

– Model-based data from forecast and other models

– Data sets created by data fusion

Discovery of Climate Patterns from Global Data Sets

Earth 
Observing 

System

Monthly Average Temperature
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Data Mining Challenges

Spatio-temporal nature of data
– Traditional data mining techniques do not take advantage of 

spatial and temporal autocorrelation.
Scalability

– Size of Earth Science data sets has increased 6 orders of 
magnitude in 20 years, and continues to grow with higher 
resolution data.

– Grid cells have gone from a resolution of 2.5° x 2.5° (10K points 
for the globe) to 250m x 250m (15M points for just California; 
about 10 billion for the globe)

High-dimensionality
– Long time series are common in Earth Science
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Detection of Ecosystem Disturbances

Goal: Detection of large scale ecological disasters that cause sudden changes 
in greenness over extensive land areas
Physical: hurricanes, fires, floods, droughts, ice storms
Biogenic: insects, mammals, pathogens
Anthropogenic: logging, drainage of wetlands, chemical pollution

Haze from forest fires over the Indonesian island of 
Borneo (October 5, 2006).  Over 8 million hectares of 
forest and farmland burned during August 2006.
Image Source: NASA

.

Ecosystem disturbances can contribute 
to the current rise of CO2 in the 
atmosphere, with global climate 
implications

In many remote locations, disturbances 
go  undetected

Satellite observations can help detect 
these disasters and help estimate their 
impact on the environment
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Detection of Ecosystem Disturbances

Hypothesis: significant and sustained decline in vegetation FPAR observed 
from satellites represents a disturbance event

Can be verified from independent records of such disturbances.
FPAR: Fraction absorbed of Photosynthetically Active Radiation by vegetation canopies

FPAR   January 1998

0 20 40 60 80 100

FPAR   July 1998

FPAR-LO event

Year

Hypothetical Disturbance Event

Potter, et al., "Major Disturbance Events in Terrestrial Ecosystems Detected using 
Global Satellite Data Sets", Global Change Biology, 9(7), 1005-1021, 2003.
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Verification of Disturbances: Fires

Manitoba, Canada, 1989

List of well-documented wildfires that burned areas covering 
several Mha in a single year or vegetation growing season.

For each confirmed wildfire event listed in the table, our 
disturbance detection method confirms a FPAR-LO event at (or 
near) the SD >= 1.7 level lasting >12 consecutive months 
associated with the reported time period of actual fire activity.

Yellowstone Fires 1988
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Hurricane Hugo 1989

Yea r Hu rricane Category Landf all Lo cation Landf all Lat/L on

1983 Alicia 3 SE Texas , U SA 28 .9 N 95.0  W
1985 Gloria 3 Eas t Coa st, U SA 35 .5 N 75.5  W
1985 Elena 3 Mississipp i, USA 30 .2 N 88.8W
1988 Gilbe rt 3 Eas t Coa st, M ex ico 20 .4 N 86.5  N,  23.9  N 97 .0 W
1989 Hugo 4 No rth Caro lina , U SA 33 .5 N 80.3  W

Hurricanes of the 1980s Detected as FPAR-LO Events

Verification of Disturbances: Hurricanes
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Southern USA Drought 1986

Year Drought Most Heavily Impacted Regional Locations

1986 Southern USA Georgia, Carolinas, California
1988 Central USA Midwest and Northeast states
1989 Northern Plains Colorado
1993 SE USA Alabama, Georgia, Carolinas, Tennessee, Virginia
1998 Southern USA Texas, Oklahoma, Carolinas, Georgia, Florida

Major Droughts Detected as FPAR-LO Events

Verification of Disturbances: Droughts
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Study Results

Estimated 9 billion metric tons of carbon moved from the Earth’s soil 
and surface life forms into the atmosphere in 18 years beginning in 
1982 due to wildfires and other disturbances.
– For comparison, fossil fuel emission of CO2 to the atmosphere each 

year was about 7 billion metric tons in 1990.

Release: 03-51AR

NASA DATA MINING REVEALS A NEW HISTORY OF NATURAL DISASTERS 

NASA is using satellite data to paint a detailed global picture of the interplay among natural disasters, 
human activities and the rise of carbon dioxide in the Earth's atmosphere during the past 20 years.

http://www.nasa.gov/centers/ames/news/releases/2003/03_51AR.html

Uniqueness of study:
global in scope
covered more than a 
decade of analysis
encompass all potential 
categories of major 
ecosystem disturbance –
physical, biogenic, and 
anthropogenic
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Land Cover Change Detection

Goal: Determine where, when and why land cover changes occur, and their 
impact on the environment

– E.g. Deforestation, Urbanization, Agricultural intensification

Motivation:
Characteristics of the land cover impacts Local climate, Radiation balance, 
Biogeochemistry, Hydrology, Diversity/abundance of terrestrial species
Conversion of natural land cover can have undesirable environmental 
consequences

Deforestation changes local 
weather. Cloudiness and rainfall can 
be greater over cleared land (image 
right) than over intact forest (left).

Urbanization. Between 
1982 and 1992 19,000 
sq. miles (equivalent to 
the area of half of Ohio) 
of rural cropland and 
wilderness were 
developed in the U.S.

The image on the right 
shows the expansion of 
Plano (near Dallas) 
between 1974 and 1989.

Source: NASA Earth Observatory
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Data: Enhanced Vegetation Index 

Global EVI in Summer, 2000.

Global EVI in Winter, 2001. Image Source: NASA/Goddard Space Flight Center Scientific Visualization Studio

Enhanced Vegetation Index (EVI) 
represents the "greenness" signal 
(area-averaged canopy photosynthetic 
capacity), with improved sensitivity in 
high biomass cover areas.

MODIS algorithms have been used to 
generate the Enhanced Vegetation 
Index (EVI) at 250-meter spatial 
resolution from Feb 2000 to the present

NASA's Terra satellite platform launched in 1999 has the 
Moderate Resolution Imaging Spectroradiometer (MODIS)
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EVI Data for the Goa Area

June

2000

Jan

2001

Image from Google Maps
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EVI in California from Jan-Dec 2001

Jan Feb Mar Apr

May Jun Jul Aug

Sep Oct Nov Dec
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Example of a Land Cover Change

Changes of this nature can be 
detected only with high-resolution 
data.

The two time series show an 
abrupt jump in EVI in 2003; a land 
cover change pattern we are 
looking for.  

The location of the points 
correspond to a new golf course, 
which was in fact opened in 2003.
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Traditional Change Detection Techniques

Fisher algorithm
CUSUM (Cumulative Sum Control Charts)
HMM-based approaches
Kalman Filter

Limitations:
– Most techniques do not scale to massive datasets
– Do not make use of seasonality of Earth Science data 

and/or intra-season variability
– Spatial and temporal autocorrelation are not exploited
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Focus of the Study: California

California has experienced rapid population growth and 
changing economic activities

population increased by 75% between 
1970 and 2005

over half of all new irrigated farmland put 
into production was of lesser quality than 
prime farmland taken out of production 
by urbanization

Study 1
San Francisco Bay area (180K points, 
about 100 miles x 50 miles)

Study 2
Entire state of California (5M points, 
about 800 miles x 200 miles)

EVI in Northern California for February 2002
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High-level view of land cover: SF Bay area

Cluster 1 - shrub cover
Cluster 2 - grass cover
Cluster 3 - evergreen tree cover
Cluster 4 - urbanized cover
Cluster 5 - agricultural cover
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A new change detection technique

Key Idea: exploit the major mode of behavior 
(seasonality) to detect changes.
The time series for each location is processed 
as follows:
1. The two most similar seasons are merged, 

and the distance/similarity is stored.
2. Step 1 is applied recursively until one season 

is left.
3. The change score for this location is based 

on whether any of the observed distances 
are extreme (e.g. ratio of maximum 
distance/minimum distance).
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Results: Histogram of Scores

There are about 180K points in total.

900 have score > 4

31 points have score > 8.  Of these 22 points were found to correspond to 
interesting land-use changes.  Others corresponded to farmland with changing 
harvest cycles.

Histogram of all scores
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Top 3 scores:  New Golf Course in Oakland

The top 3 points correspond to a golf course in Oakland.  This golf course was built in 2003, 
which corresponds to the time step at which the time series exhibit a change.



© Vipin Kumar HiPC – December 21, 2007  28

Results: Subdivision under construction in Hayward, CA

These 3 time series correspond to a subdivision under construction. 
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Results: New golf course in San Jose

Golf Course (built in 2001, corresponding to change in time series)



© Vipin Kumar HiPC – December 21, 2007  30

Results: New subdivision in Santa Clara

Subdivision built in 2002
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Results: New Shopping Area in Fremont

Construction of Pacific Commons shopping area in Fremont, CA
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Farmland

Farmland points such as this one mislead the algorithm.  The changing crop patterns appear to 
be changes, but are not really changes of the type we are looking for.  We will need to refine 
our technique to handle points such as this one.
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Study 2:  Entire California

Data has 5,165,205 locations, an increase of about 30-
fold over the Bay Area data

After applying our algorithm, 2,833 locations with change 
points are detected at a high threshold

The larger data has more types of changes:
– Desert to farmland
– Desert to golf courses
– Farmland to housing subdivisions

..

..



© Vipin Kumar HiPC – December 21, 2007  34

Example: Conversion to farmland

This is a group of points that were all detected by our algorithm and the points are spatially 
located close to each other
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Example: Farmland to subdivision

This is a location in Sacramento where farm land has been cleared and a subdivision is being 
built.
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Bunch of Golf Courses in SE California Desert

This is an example of a new golf course 
being built in Palm Desert, CA
This town has over 100 golf courses, 
putting intense pressure on the water 
supply
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Land Cover Change Detection: Challenges

Scalability
– The data is at 250m resolution (and may become 

even finer in the future).
– High resolution allows detection of even small 

localized changes  but increases computation time
– Scalablity is critical, especially if the analysis is done 

on a global scale

Characterizing changes
– Techniques are more useful when changes are 

characterized in relation to other points
– This greatly enhances the ability of the domain 

scientist to explain why the change occurred



© Vipin Kumar HiPC – December 21, 2007  38

Climate Indices: Connecting the 
Ocean/Atmosphere and the Land
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climate and related processes 
over widely separated points on 
the Earth
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El Niño is the anomalous warming of the eastern tropical 
region of the Pacific.

Graphic: http://www.usatoday.com/weather/tg/wetnino/wetnino.htm

Normal Year: Trade winds push 
warm ocean water west, cool water 
rises in its place

El Niño Year: Trade winds ease, 
switch direction, warmest water 
moves east.

Effects: Drought in Australia, warmer winter 
in North America, flooding in coastal Peru, 
increased rainfall in East Africa

The El Niño Climate Phenomenon
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A Pressure Based El Niño Index: SOI

The Southern Oscillation 
Index (SOI) is also 
associated with El Niño.

Defined as the normalized 
pressure differences 
between Tahiti and 
Darwin Australia.

Both temperature and 
pressure based indices 
capture the same El Niño 
climate phenomenon.
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NAO (North Atlantic Oscillation)

NAO computed as the normalized difference between SLP 
at a pair of land stations in the Arctic and the subtropical 
Atlantic regions of the North Atlantic Ocean
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List of Well Known Climate Indices

Index Description 
 

SOI Southern Oscillation Index: Measures the SLP anomalies between Darwin and Tahiti 
NAO North Atlantic Oscillation: Normalized SLP differences between Ponta Delgada, Azores 

and Stykkisholmur, Iceland 
AO Arctic Oscillation: Defined as the _first principal component of SLP poleward of 20° N 
PDO Pacific Decadel Oscillation: Derived as the leading principal component of monthly SST 

anomalies in the North Pacific Ocean, poleward of 20° N 
QBO Quasi-Biennial Oscillation Index: Measures the regular variation of zonal (i.e. east-west) 

strato-spheric winds above the equator 
CTI Cold Tongue Index: Captures SST variations in the cold tongue region of the equatorial 

Pacific Ocean (6° N-6° S, 180° -90° W) 
WP Western Pacific: Represents a low-frequency temporal function of the ‘zonal dipole' SLP 

spatial pattern involving the Kamchatka Peninsula, southeastern Asia and far western 
tropical and subtropical North Pacific 

NINO1+2 Sea surface temperature anomalies in the region bounded by 80° W-90° W and 0° -10° S 
NINO3 Sea surface temperature anomalies in the region bounded by 90° W-150° W and 5° S-5° N 
NINO3.4 Sea surface temperature anomalies in the region bounded by 120° W-170° W and 5° S-5° N 
NINO4 Sea surface temperature anomalies in the region bounded by 150° W-160° W and 5° S-5° N 
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Discovery of Climate Indices Using Clustering

Result: A cluster-based approach for discovering climate indices provides better physical 
interpretation than those based on the SVD/EOF paradigm, and provide candidate indices 
with better predictive power than known indices for some land areas. 
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Clustering provides an alternative 
approach for finding candidate 
indices.

– Clusters represent ocean regions with 
relatively homogeneous behavior. 

– The centroids of these clusters are time 
series that summarize the behavior of 
these ocean areas, and thus, represent 
potential climate indices.

Clusters are found using the Shared 
Nearest Neighbor (SNN) method that 
eliminates “noise” points and tends to find 
regions of “uniform density”.

Clusters are filtered to eliminate 
those with low impact on land points
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SST Clusters that Reproduce Known Indices

Clusters of SST that have high impact on 
land temperature

# grid points: 67K Land, 40K Ocean      Current data size range: 20 – 400 MB

Monthly data over a range of 17 to 50 years

Cluster Nino Index Correlation
94 NINO 1+2 0.9225
67 NINO 3 0.9462
78 NINO 3.4 0.9196
75 NINO 4 0.9165

Some SST clusters reproduce well-
known climate indices for El Niño.
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SST Cluster Moderately Correlated to Known Indices

Some SST clusters are significantly different than known indices, but provide better 
correlation with land climate variables than known indices for many parts of the globe.  

Cluster 29 versus El Nino Indices 
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Finding New Patterns: Indian Monsoon Dipole Mode Index 

Recently a new index, the 
Indian Ocean Dipole Mode 
index (DMI), has been 
discovered*. 
DMI is defined as the difference 
in SST anomaly between the 
region 5S-5N, 55E-75E and the 
region 0-10S, 85E-95E.
DMI and is an indicator of a 
weak monsoon over the Indian 
subcontinent and heavy rainfall 
over East Africa.
We can reproduce this index as 
a difference of pressure indices 
of clusters 16 and 22.

* N. H. Saji, B. N. Goswami, P. N. Vinayachandran and T. Yamagata,  “A dipole mode in the tropical Indian Ocean,” Nature 401, 360-363 (23 September 1999).

DMI

Plot of cluster 16 – cluster 22 versus the Indian Ocean Dipole Mode index. 
(Indices smoothed using 12 month moving average.)
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Dynamic Climate Indices

Most well-known indices based on data 
collected at fixed land stations.
NAO computed as the normalized difference 
between SLP at a pair of land stations in the 
Arctic and the subtropical Atlantic regions of 
the North Atlantic Ocean
However, underlying phenomenon may not 
occur at exact location of the land station.  
e.g. NAO
Challenge: Given sensor readings for SLP at 
different points in the ocean, how to identify 
clusters of low/high pressure points that may 
move with space and time.

Source:  Portis et al, Seasonality of the NAO, AGU Chapman 
Conference, 2000.

NAO
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Summary

Data driven applications such as data mining are 
increasingly driving the state-of-the-art in HPC.

High Performance Data Mining is making 
significant contributions in areas such as climate 
analysis, biology, health sciences, 
scientific/engineering simulations.

Tremendous scope for future work
– New and better algorithms
– Parallel/Distributed formulations
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