
A Performance and Productivity Study
using MPI, Titanium, and Fortress

Chris Bryan, Wesley Emeneker, and Amy Apon
Department of Computer Science and Computer Engineering (CSCE)

University of Arkansas, Fayetteville
Email: {cjb04, ewe, aapon}@uark.edu

I. INTRODUCTION

The popularity of cluster computing has in-
creased focus on usability, especially in the area
of programmability. Languages and libraries that
require explicit message passing have been the
standard. New languages, designed for cluster
computing, are coming to the forefront as a way
to simplify parallel programming. Titanium and
Fortress are examples of this new class of pro-
gramming paradigms. This papers presents results
from a productivity study of these two newcom-
ers with MPI, the de facto standard for parallel
programming [1].

With increased focus on development of
programmer-friendly parallel languages, it has be-
come clear that runtime, while important, is no
longer the only metric that counts. Programmer
productivity should also be considered. This pa-
pers presents results of a study of programmer
productivity and language usability for the stan-
dard MPI and two new developing programming
languages, Titanium [2] and Fortress [3]. These
new languages have an emphasis not only on per-
formance, but on ease of usability. These results
are therefore holistic, as they affect both perfor-
mance and productivity. These are obtained by
coding two algorithms- a computation-intensive
matrix multiply and a communication-intensive
matrix transformation, in each language to form
a program chrestomathy. The resulting programs
can be compared against each other.

II. OVERVIEW

Distributed-memory programming requires
message passing, either explicitly or implicitly
through use of a global address space (GAS).
GAS programming is generally considered easier
to code than explicit message passing models, but
may incur performance penalties on distributed
hardware. Explicit message passing can be
tailored using efficient algorithms for a particular
application, and communication can be sent in
bulk instead of many small, individual messages
that a GAS might inadvertently use. Explicit
message passing requires fine-grained program
control and careful algorithm setup, which may
lead to tedious programming and debugging.
However, the explicit message passing paradigm
(notably MPI) is still the most widely used way
to achieve parallel programming on distributed
systems due to its performance.

Currently, many languages are being researched
and developed to try to find a balance between
the high performance of MPI, and the usability
of GAS programming. In this paper, MPI is
compared against Titanium and Fortress- two of
these newcomers.

a) MPI Overview: The MPI standard was
introduced in 1994, and quickly became thede
facto standard for HPC message passing [4]. MPI
has been a very successful approach for achiev-
ing parallelism in programs, as it is widespread,
portable, and achieves high performance. It has
been described as a “complete” model, whereby
any parallel algorithm may be implemented [5].

One common issue raised about MPI is its
complexity- the high control needed to program
using MPI can make for tedious programs that
are difficult to debug, or port between hardwares
seamlessly.

b) Titanium Overview: Titanium is a lan-
guage designed for “high-performance parallel
scientific computing” designed by the University
of California-Berkley [2]. It is based on Java
syntax, but at compile time translates code into
C and uses an available backend for messaging.
Titanium is specifically referred to as a PGAS,
or Partitioned GAS, langauge, where global data
may be specifically allocated or divided among
distributed memory regions. Global data may be
implicitly referenced by global pointers, or can
be copied by explicit commands (similar to MPI).
This allows for two types of programming styles
to be used. Programming can be done entirely
relying on a GAS, defaulting all variables to
global status and able to be accessed by con-
current processes at any time. This may incur
performance penalties though. With this in mind,
programs (or parts of programs) may be refined
using specified data distribution and allocation
between processes, cutting down on global lookup
and modification costs.

c) Fortress Overview: Fortress is called a
“novel” language for HPC. It is a built-from-the-
ground-up effort by Sun, looking to become a
standard in next-generation, multicore, systems
[6]. Fortress was a part of the DARPA HPCS
initiative through Phase II, and is now an open-
source project. The current compiler runs on top
of a Java Virtual Machine, and only a small
core of the language specification was working
at the time of this testing. The program structure
of Fortress is meant to reflect scienctific and
mathematical notation, and its syntax, semantics,
and parallelism reflect that. Parallelism in Fortress
is meant to explicit, with compilers automati-
cally distributing actions likefor loops or par-
allel blocks of code. Like Titanium, Fortress will
eventually allow PGAS programming, by letting
the programmer specify data locality.

d) Kernels: Two simple kernels were im-
plemented and tested- a matrix multiply and
matrix transform. The matrix multiply used a
straightforward decomposition, if needed, to form
submatrices which were multiplied and summed.
Such an approach would test heavy computation.
The matrix transform is written to illustrate use
of heavy interprocess communication, either by
a global matrix being accessed by all processes
(Titanium and Fortress), or by partitioning the
matrix and using ping-pong communication to
transform it (MPI).

e) Benchmarks: To test performance and
productivity, the kernels were evaluated over a
small set of benchmarks. For performance, run-
times and scalability were checked. For produc-
tivity, a small set of programmability benchmarks
were used to assess the general usability of a
program. These benchmarks were defined as:

• Lines of code (LoC), number of characters
used (NoC), and characters per line (CpL)

• A sequential-to-parallel conversion effort
that describes the effort required to convert
code from a sequential base to parallel. This
was done for both lines of code, and number
of characters. To measure this, two efficiency
equations were used:

(LoCparallel − LoCsequential)/LoCsequential

(1)
(NoCparallel−NoCsequential)/NoCsequential

(2)
• A parallel conceptual complexity score was

generated, based upon language constructs
needed to parallelize a program. This evalu-
ates the complexity of parallel calls used, and
the number that are required to parallelize
each kernel. Different parallel constructs add
to a sum score for each kernel.

Regarding the parallel conceptual complexity
score, the constructs used were broken up into
different categories. Work distributors (WD) al-
locate work or tasks among processes. Data dis-
tributors (DD) describe data itself that must be
parallelized or localized. Communicators (Comm)
are explicit communication calls. Synchronization

and consistency (SC) calls ensure consistent data
between processes. Any other required calls for
use of parallel programming are included under
miscellaneous (Misc) calls. Each of these calls
is further broken up into parameters used, the
specific function call itself, and the references in
it to processes specific numbers, ranks, or sizes.

f) Testing Setup: The multiply and trans-
form kernels were written in MPI, Titanium, and
Fortress. The multiply code was actually written
twice in Titanium, once using only GAS program-
ming, and once using explicit data partitioning.
For testing sequential-to-parallel conversion ef-
fort, MPI was represented in C code, and Titanium
in Java. As Fortress is not based on any prior
syntax, this test was not applicable.

III. R ESULTS

Both shared memory (SM) and distributed
memory (DM) runs were performed for each
kernel, with 2, 4, 8, or 16 processors (16 with
distributed memory only). At Fortress’ current
development, true performance testing was impos-
sible, and was thus omitted.

1) Matrix Multiply: For the Matrix Multiply
runs, MPI used a matrix partitioning scheme
that divided and distributed the matrices among
processes. Two Titanium kernels were coded, a
“Ti-Nave kernel” using GAS programming, and a
“Ti-Real” kernel using explicit data copying.

In shared memory, Ti-Real and Ti-Naive had
near identical runtimes and scaling on all matrix
sizes and number of cores, around a factor of
1.98-1.99, as cores doubled. The MPI code had
worse scaling, with limits between a factor of
1.3 to 1.7 as cores doubled. Overall, the MPI
code was usually faster than the Titanium codes,
with the single exception being at the 2048x2048
matrix size running 8 cores. Compared to Ti-Real,
the Ti-Naive was actually slightly faster across all
runs (approximately by a factor of 1.09). This is
because Ti-Real does local copying of matrices
across local memory spaces. Because the copying
is local, it is very fast, but the extra work does
slow down Ti-Real slightly. In shared memory, a
global Titanium call is optimized by the compiler

Fig. 1. SM Multiply 1024x1024 Matrix

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
Ti-Naive

MPI

into a local memory operation, simply a memory
put or load.

This was not the case for distributed mem-
ory however. Running Ti-Naive on distributed
memory quickly showed the problems of GAS
programming in this hardware environment. With
a GAS, every matrix reference became global call,
with lookup overhead and communication costs.
For matrices of size 128x128, the Ti-Naive code
exhibits runtimes from almost 650 seconds for
2 processors to just over 500 seconds with 8
processors, and exhibits no better scalability than
1.14 as cores double (this from 2 to 4 cores). The
Ti-Real and MPI code both complete computation
in under .3 seconds for the same problem size.

A subset of multiply graphs are shown here,
in Figures 1 and 2. These are runtimes of ma-
trices sized 1024x1024. In shared memory, the
two Titanium kernels show very similar runtime,
with Ti-Naive being slightly faster. In distributed
memory, the Ti-Naive runtimes are omitted.

2) Matrix Transform: As in the matrix mul-
tiply, in shared memory the Titanium compiler
translated global calls into local ones. This meant
that the Titanium transform code, which is based
on GAS programming, is extremely fast in shared
memory, while the explicitly message-passing
MPI code is not optimized for shared memory,

Fig. 2. DM Multiply - 1024x1024 Matrix

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
MPI

and is much slower. The Titanium code for shared
memory runs averaged approximately 1000 times
faster than the MPI code.

In distributed memory, the Titanium runtime
was very different because of now-truly global
calls. The Titanium compiler cannot optimize
these calls into local ones, and so they are much,
much slower. Titanium runtimes were much more
similar to MPI runtimes. Additionally, the MPI
code scaled moderately better than the Titanium
code. This is because the Titanium code used a
global array in a single nodes memory region, as
opposed to the MPI codes partitioned arrays that
ping pong messages back and forth. With all pro-
cesses trying to access only one memory region
(even with only two nodes), communication was
slowed down and resulted in degraded scaling.

TABLE I
MULTIPLY CONVERSIONEFFICIENCIES

MPI Ti naive Ti-Real
LoC % Effort 64.5% 48.28% 110.34%
NoC % Effort 63.22% 55.11% 111.79%

A. Productivity Results

Generally, Titanium and Fortress had much
better scores in complexity than MPI over all
productivity benchmarks.

TABLE II
TRANSFORMCONVERSIONEFFICIENCIES

MPI Ti
LoC % Effort 116.98% 43.48%
NoC % Effort 79.61% 66.89%

TABLE III
MPI TRANSFORMPARALLEL COMPLEXITY

Params Calls Rank/Size
WD 23 9 2
DD 7 5

Comm 42 6 6
SC

Misc 6 5 2
Sub Totals 78 25 10

Total 113
Notes : 2 if, 7 for, 2 malloc, 1 mem-
set, 2 free, 1 MPIScatter, 2 MPISend,
2 MPI Recv, 1 MPI Gather, 1 include
“mpi.h”, 1 MPI Init, 1 MPI Comm rank,
1 MPI Comm size, and 1 MPIFinalize

The lines of code and number of characters
used in kernels for these languages were much
lower in Fortress and Titanium than in MPI, with
MPI code sometimes requiring twice the lines of
code than Fortress and Titanium. Tables I and II
show the conversion efficiencies of the multiply
and transform kernels. The sequential-to-parallel
conversion efficiency of Titanium was generally
lower than MPI as well, excepting for the Ti-Real
kernel. This is because the explicit data distribu-
tion in Ti-Real required a large amount of extra
work and programming. It is notable to see the
difference between Ti-Real and Ti-Naive in Table
I. By implementing explicit data management,
the Titanium code became even more complex
than the MPI code. This kernel did not apply to
Fortress, as it did not have a base syntax in which
it could be represented.

The parallel complexity of Titanium and
Fortress were much lower than MPI as well. In
parallel conceptual complexity metrics, MPI is
shown to be 2-3 times as complex as Titanium and
Fortress for these kernels. This is seen in Tables
III, IV and V, which show the conceptual com-
plexity scores for the matrix transform kernels.
Note how the Fortress code, in Figure V had only

TABLE IV
TITANIUM TRANSFORMPARALLEL COMPLEXITY

Params Calls Rank/Size
WD 10 5 4
DD

Comm 3 1 1
SC 1

Misc 2 2
Sub Totals 13 9 7

Total 29
Notes : 2 if, 1 foreach, 2 for, 1 broadcast,
1 barrier, 1 Ti.thisProc, and 1 Ti.numProcs

TABLE V
FORTRESSTRANSFORMPARALLEL COMPLEXITY

Params Calls Rank/Size
WD 12 4
DD

Comm
SC 1

Misc
Sub Totals 12 5

Total 17
Notes : 4 for, 1 atomic..do

two types of calls that are scored here, while the
Titanium code had over triple of that number. The
MPI code had even more than that, demonstrating
that MPI has a high parallel complexity. The
matrix multiply scores demonstrated the same
pattern, with Fortress being the least complex,
followed by Titanium and then MPI (even Ti-Real
was less than MPI in this benchmark, although its
table is omitted here).

IV. CONCLUSIONS AND FUTURE WORK

Many people have said that MPI is a complex
way to perform parallel computation; for these
kernels that observation was quantified. Titanium
seems to be more usable and programmable
than MPI, as it received generally better produc-
tivity scores, excepting when it used explicitly
distributed data (Ti-Real), when it compared to
MPI’s complexity. This shows that GAS pro-
gramming can be a double-edged sword, good
for productivity but detrimental to performance.
Fortress itself was not evaluated to a final score,
although it shows good productivity promise.

There are many avenues for future productivity
testing, both for these and other new parallel
languages. This study only considered a small set
of programmability benchmarks; there are others
that could be implemented. Code development
time is a very relevant measure of a language’s
feasibility, as is the learning curve for a new
language. Debugging and error checking are not
considered here at all, but these are difficult
issues for parallel programming. There has been
work done, especially in Titanium, on unintended
consequences of GAS programming [7], where
unforeseen global references can hinder perfor-
mance. This is a difficult thing to debug for,
although developing tools to do this could be very
beneficial for future language development.

REFERENCES

[1] M. SuB, A. Podlich, and C. Leopold, “Observations
on the Publicity and Usage of Parallel Programming
Systems and Languages: A Survey Approach,” tech. rep.,
University of Kassel, Wilhelmhöher Allee 73, D-34121
Kassel, Germany, 2007.

[2] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton
Miyamoto, Ben Liblit, Arvind Krishnamurthy, Paul Hil-
finger, S. Graham, D. Gay, P. Colella, and A. Aiken,
“Titanium: A High-Performance Java dialect,” inACM
1998 Workshop on Java for High-Performance Network
Computing, (New York, NY 10036, USA), ACM Press,
1998.

[3] E. Allen, D. Chase, J. Hallett, V. Luchango, J.-W.
Maessen, S. Ryu, and G. L. S. Jr., “The Fortress Lan-
guage Specification.”

[4] W. Gropp, E. Lusk, and A. Skjellum,Using MPI (2nd
ed.): Portable Parallel Programming with the Message-
Passing Interface. Cambridge, MA, USA: MIT Press,
1999.

[5] W. Gropp, “Learning from the Success of MPI,” inHiPC
’01: Proceedings of the 8th International Conference on
High Performance Computing, (London, UK), pp. 81–
94, Springer-Verlag, 2001.

[6] M. Weiland, “Chapel, Fortress and X10: Novel Lan-
guages for HPC,” tech. rep., The University of Edin-
burgh, October 2007.

[7] J. Su and K. Yelick, “Automatic Communication Per-
formance Debugging in PGAS Languages,” tech. rep.,
October 2007.

