
1

On the Comparative Performance of Parallel
Algorithms on Small GPU/CUDA Clusters

N. P. Karunadasa & D. N. Ranasinghe
University of Colombo School of Computing, Sri Lanka

nishantha@opensource.lk, dnr@ucsc.cmb.ac.lk

Abstract—CUDA programmed GPUs are rapidly
becoming a major choice in high performance com-
puting and there are a growing number of applica-
tions which are being ported to the CUDA platform.
However much less research has been carried out to
evaluate the performance when CUDA is integrated
with other parallel programming paradigms. We
have developed a general purpose matrix multiplica-
tion algorithm and a Conjugate Gradient algorithm
using CUDA and MPI. In this approach, MPI works
as the data distributing mechanism between the GPU
nodes and CUDA as the main computing engine. This
enables the programmer to connect GPU nodes via
high speed Ethernet without special technologies and
also it helps the programmer to see the separate GPU
nodes as they are and execute different components
of a program in several GPU nodes.

I. INTRODUCTION

CUDA is gaining its position as the choice of
high performance computing[1] community grad-
ually and there are growing amount of work be-
ing carried out around the world[2][3]. MPI has
been the choice of high performance computing
for more than a decade and it has proven its
capability in delivering higher performance in par-
allel applications. CUDA and MPI use different
programming approaches but both of them depend
on the inherent parallelism of the application to
be effective. CUDA runs on the GPU and the
GPU is a magnitude order faster than the common
CPU.But the the performance of the GPU depends
on the application which is executed by the GPU.

N. P. Karunadasa is a student of the University of Colombo
School of Computing and following the Bachelor degree in
Computer Science

There are several factors dictate the processing
speed of the GPU. One of them are the number
of cores it has. The GPU, unlike the CPU uses
less number of registers to store data temporally
while they are processing. Therefore, GPU can
uses more registers to data processing and that is
one of the major reason to have many execution
cores inside the GPU. In addition, the GPU has
a faster memory bandwidth between device mem-
ory and the processing cores. However, any given
algorithm won’t gain the performance which are
showed in the GPU specification because only the
algorithm those are specially designed for the GPU
environment will only enjoy the performance of
the GPU. So that if the CUDA application has
real parallel components, even a single GPU card
is capable of delivering significant performance[4].
MPI typically runs on CPU clusters so that it does
not have the support of hardware level performance
acceleration like what CUDA has. However using
MPI, we can execute different components of dif-
ferent programs in different CPUs in the cluster
whereas we can only run one kernel at a time
inside the GPU while we are using CUDA[5]. In
other words MPI is excellent in distributing the
parallel components within a parallel environment
and CUDA has mastered in executing parallel
components exploiting threads. In this paper we
will describe how we integrate these capabilities
of both programming approaches and how we can
achieve superior performance in general purpose
applications.

In this research work, we have experimented
CUDA+MPI programming approach with two
well-known algorithms and we have showed how
we can achieve higher performance by means of



2

using MPI as computation distributing mechanism
and CUDA as the main execution engine. However
this CUDA+MPI programming paradigm is not the
ideal approach for all parallel applications because
there are instances where this programming ap-
proach delivers poor performance. In the Strassen
algorithm, we have shown that effectively we can
use CUDA+MPI approach whereas Conjugate Gra-
dient algorithm, is less effective.

NVIDIA SLI technology can be used to connect
multiple GPUs that are in one computer and as
of the latest release of the CUDA sdk, all those
SLI connected GPU cards can only be seen as
one single GPU by the programmer. But we can
connect GPU cards in different computers using
ethernet and exploit CUDA+MPI model so that it
enables the user to see different GPUs in different
computer as separate processing engines. Hence the
programmer can execute different kernels in one
application on different GPUs at the same time.

II. CUDA AND MPI

A. CUDA

CUDA (Compute Unified Device Architecture
)[7] is the programming language provided by
NVIDIA to run general purpose applications on
NVIDIA GPUs. The CUDA incorporates an Ap-
plication Programmer Interface, a runtime, couple
of higher level libraries and a device driver for the
underline GPU.

B. MPI

MPI provides a standard set of subprogram
definitions which allow parallel programs to be
written using a distributed memory programming
model.to allow more than one process to perform
computations on a given set of data copies of this
data must be sent to any process which requires
it (to be saved on that process’s memory). This is
referred to as message passing.

III. ALGORITHMS AND IMPLEMENTATIONS

A. Strassens algorithm

Strassen’s algorithm for matrix multiplication is
an O(n2.83) efficient approach. We consider two
matrices A and B and the A, B matrices are divided

in to 4 equal sized matrices creating 8 sub matrices
of size n/2 if the size of the original matrices is n.
The 7 Strassens Equations[9] are applied on above
sub matrices creating 7 temporary sub matrices of
size n/2.

P1 = (A11 + A22) ∗ (B11 + B22) (1)

P2 = (A21 + A22) ∗ B11 (2)

P3 = A11 ∗ (B12 − B22) (3)

P4 = A22 ∗ (B21 − B11) (4)

P5 = (A11 + A12) ∗ B22 (5)

P6 = (A21 − A11) ∗ (B11 + B12) (6)

P7 = (A12 − A22) ∗ (B21 + B22) (7)

The temporary sub matrices are used to calculate
4 sub matrices of result C.

C11 = P1 + P4 − P5 + P7 (8)

C12 = P3 + P5 (9)

C21 = P2 + P4 (10)

C22 = P1 + P3 − P2 + P6 (11)

When parallelizing above multiplication using a
divide and conquer approach following tasks are
done by the root master.

• Creation of A and B matrices.
• Scattering A and B in to 8 sub matrices.
• Do addition and subtractions on calculating

P1...P7 sub matrices
• Sending the added or subtracted sub matrices

to the slave to do only the multiplication,
while keeping sub matrices to do one mul-
tiplication locally.

• Do the multiplication on local sub matrices
calculating say, P7.

• Receive the P1...P6 sub matrices from the
slave.

• Solve the 4 equations to calculate C11..C22,
doing additions and subtractions.

• Gather the C11...C22 sub matrices creating C.
The tasks of the slave would be,to receive the

two added or subtracted matrices from master and



3

recursively apply Strassens algorithm by becoming
a sub master and do the multiplication using con-
ventional method on the sub matrices. Finally the
result is sent back to the master.

The matrix multiplication part of the algorithm
is delivered to the GPU in each node because
the GPU is capable of high performance ma-
trix multiplication[10]. We implemented the GPU
based matrix multiplication using basic CUDA
language but the data transfer overhead between the
GPU memory and the CPU memory will reduce the
overrall performance of the application. However
the data which is copied to the GPU memory is
copied again to the cache of the each execution core
cluster in the GPU. So it enhances the performance
in a manner that it hides the latency between GPU
memory and the host memory.

B. Conjugate Gradient method

Conjugate Gradient method can be recom-
mended over simple Gaussian elimination if ma-
trix A is very large and sparse. Theoretically the
Conjugate Gradient algorithm will yield the so-
lution of the system Ax=b in at most n steps.
In practice however the algorithm is used as an
iterative method to produce a sequence of vectors
converging to the solution.

In this algorithm, the loop is the most compute
intensive part and we were not able to find a single
entity which is independent of other components
of the algorithm in order to execute on the GPU
using CUDA. Therefore small computation parts
were transformed into CUDA and executed on
the GPU. Because of the data dependency among
computations, MPI root node requires to gather
data and send the new data to slave nodes inside
every cycle of the loop.

IV. RESULTS AND ANALYSIS

We have executed these programs in a CPU
cluster with 6 nodes and on a 2 node GPU cluster.
In CPU cluster there are 6 nodes each of which
has two 3.0 GHz Intel Pentium 4 processors with
2GB RAM. In the GPU cluster there are two
nodes where one node has a 2.4 GHz Intel Quad
Core processor with 3GB RAM and the other one

Fig. 1. Conjugate Gradient algorithm

has a 3.0 GHz Intel Dual Core processor with
1GB RAM.The quad core processor node is named
as A and the dualcore processor node is named
as B. Each GPU node has a NVIDIA 8800 GT
graphic card and with 768MB graphic memory. We
executed each program 10 times in each scenario
and calculated average execution time.

A. Results

Fig. 2. Strassen’s on CPU cluster with MPI

According to figure 3, Strassen’s algorithm per-
forms better in the A computer than the B. this
is because the A computer has higher hardware
specification than B regardless GPU card it hosts.
The host processor and the host memory plays
a critical role in GPGPU computing, because the
GPU is not capable of doing anything by itself



4

Fig. 3. Strassen’s on each GPU node

Fig. 4. Strassen’s on single GPU node vs CUDA+MPI

but it needs the help of the CPU and the host
memory in order to work. Figure 4 shows that how
CUDA+MPI based Strassen’s algorithm performs
against single GPU based node. In this scenario,
we have used the A computer as the single GPU
node and algorithm was implemented with CUDA
language. In that figure, CUDA+MPI program does
not show significant performance gain because the
B computer is comparatively slow in computing as
mentioned earlier.

When comparing figure 2 and figure 4, the
CUDA+MPI based Strassen’s algorithm out per-
formed the CPU cluster/MPI based one. The
CUDA+MPI based program has more then 20
times faster than the six node CPU cluster version.
This is to be expected due to the real power of the
GPU in parallel processing.

In contrast the Conjugate Gradient algorithm as
figure 1 based on a one huge loop and there are data

Fig. 5. Conjugate Gradient method in CPU cluster

Fig. 6. Conjugate Gradient method on each GPU node

dependencies inside the loop. Therefore according
to the firure 5 and 6,the algorithm doesn’t give
predictable performance improvement in the CPU
clustering environment as well as on the GPU clus-
ter. The most significant fact is that the normal MPI
based implementation delivers higher performance
than the CUDA+MPI version as the figure 7. By
carefully examining the program, we note that this
is because of the lack of second level parallelism in
the Conjugate Gradient method. Therefore CUDA
is not especially usefull in this scenario. Infact the
GPU can handle some parts of the computations
but because of the memory latency between the
GPU memory and the CPU memory, it won’t give
much performance gain

B. Analysis

First of all we should consider the major differ-
ence between above two algorithms. In Strassen,
it has a parallel implementated component within
the matrix multiplication. Matrix multiplication re-
quires considerable amount of processing power.



5

Fig. 7. MPI Conjugate Gradient method vs CUDA+MPI
version

But in Conjugate Gradient method, after distribut-
ing data among nodes, it does not have a parallel
component which requires considerable amount of
processing and also does have the data dependency.
In other words after expressing parallelism using
MPI, Starssen has another level of parallelism
which can easily be expressed using CUDA but
the Conjugate Gradient algorithm does not have
such second level parallelism. Therefore Strassen’s
gives higher performance than normal MPI version
when it is combined with CUDA+MPI. But the
Conjugate Gradient method does not deliver much
higher performance than normal MPI when it exe-
cuted with CUDA+MPI.

Threfore When we consider achieving perfor-
mance using CUDA+MPI, there are two things that
we should consider

• The first is, does the algorithm have two levels
of parallelism?. If the algorithm has second
level parallelism then the second factor should
be considered.

• The second factor is that whether the second
level parallelism have some compute intensive
part that can be processed with in a GPU? If it
has not a considerable amount of work which
cannot be easily handled by the GPU, then
there will not be much higher performance
by executing that second level parallel com-
ponents with CUDA as expected.

In our GPU cluster, there are two nodes each
having one GPU card. These two machines have
different hardware specifications except that they
have identical GPU cards. Therefore we can con-

nect heterogeneous computers those having GPU
cards by means of CUDA+MPI. This is important
because if we want to build a GPU cluster for high
performance applications, we can get it done by
adding GPU cards to existing heterogeneous CPU
cluster.

V. CONCLUSION

Using CUDA+MPI we can accelerate parallel
applications which have certain inherent paral-
lelism characteristics. In such cases, the perfor-
mance enhancement is more than that of by a MPI
cluster. CUDA+MPI approach has also highlighted
the fact that it will help to build high performance
computing clusters at low cost. Finally we hope
to enhance the capabilities of CUDA+MPI pro-
gramming approach by introducing automatic load
balancing in a cluster in which load is dynamically
varying.

REFERENCES

[1] H. Kasim , V. March1, R. Zhang, S. See.Survey on Parallel
Programming Mode.Proceedings of the IFIP International
Conference on Network and Parallel Computing (IFIP
2008)

[2] G.Vasiliadis, S.Antonatos, M. Polychronakis, E. Evan-
gelos, P.Markatos, S. Ioannidis..Gnort: High Perormance
Network Intrusion deection Using Graphics Proces-
sors.Institute of Computer Science, Foundation for Re-
search and Technology Hellas,Greece.

[3] P. Harish, J. Narayanan.Accelerating large graph algo-
rithms on the GPU using CUDA.Center for Visual Infor-
mation Technology. International Institute of Information
Technology Hyderabad, India.

[4] S. tomov, J.Dongarra.M. Baboulin..Towards Dense Linear
Algebra for Hybrid GPU Accelerated Manycore Systems.

[5] NVIDIA CUDA.Compute Unified Device Architecture
Programming Guide. Version 2.

[6] A. Richardson, A. Gray.Utilisation of the GPU architec-
ture for HPC.EPCC, The University of Edinburgh

[7] T.R. Halfhill.Parallel Processing With CUDA,
Nvidias High-Performance Computing Platform Uses
Massive Multithreading. International Journal on
Microprocessors,01/28/08-01.

[8] Message Passing Interface Forum, MPI: A Message-
Passing Interface Standard, International Journal of Su-
percomputer Applications, Vol. 8, No. 3/4,1994.

[9] J. Green. Strassens Fast Multiplication of Matrices Algo-
rithm and Spreadsheet Matrix Multiplications.

[10] S.Dinkins.performance and scalability analysis on paral-
leled matrix multiplication on shared memory.August 3,
2007


