

Immediate Mode Scheduling Methods for Independent Jobs on Open Online

Heterogeneous Systems

Abhishek Kumar
†
, Navneet Chaubey

†
, Sireesha Yakkali

†

Computer Science and Information Systems Department,

Birla Institute of Technology and Science, Pilani – Goa Campus

Zuarinagar, Goa – 403726, INDIA

Email: (abhishek.kumar.ak}@gmail.com, {f2005512 and f2006081}@bits-goa.ac.in

Abstract

Grid infrastructures and grid based applications

are becoming common approaches for solving large

scale science and engineering problems. The efficient

scheduling of independent computational jobs in a

heterogeneous computing (HC) environment is an

important problem in domains such as grid computing.

In this work, we consider an online scheduling problem

in immediate mode, where jobs arrive over time and

are allocated to machines as soon as they arrive. All

jobs’ characteristics are unknown before their arrival

times. We implemented several scheduling algorithms

and measured three metrics for comparison: response

time, bounded slowdown and system utilization. Our

simulation allowed us to identify which of the

considered methods perform better for response time,

bounded slowdown and utilization at different system

loads. We also evaluate the usefulness of the methods if

certain grid characteristics such as heterogeneity of

jobs and resources are known in advance.

Keywords: Immediate mode scheduling,

Heterogeneous systems

1. Introduction and Motivation

A grid is a heterogeneous system in which resources

may belong to different organizations. Grid

computing[1] started as a project to link geographically

dispersed supercomputers[2]. It resulted in the

development of several large scale applications(such as

NetSolve[3]).

A complex computational problem benefits by using

many nodes of the grid at the same. In open, online

systems, jobs arrive over time and the characteristics of

these jobs (such as expected computational time) are

not known beforehand.

Grid systems usually span over multiple

organizations and are dynamic in nature. They usually

receive computational tasks or jobs from multiple

organizations and users. A scheduler in such an

environment needs to allocate different jobs to diverse

machines, each with its own computational capacity.

One important goal for the scheduler is to provide load

balancing of the resources so that idle time is

minimized. An important necessity for such a

scheduler is to allocate jobs to resources as fast as

possible. Immediate mode methods of scheduling fall

into this category since they require very little time for

allocation. They are very efficient in terms of

scheduling time compared to sophisticated methods

(Such as those involving genetic algorithms[4]).

In the immediate mode, a job is scheduled as soon

as it arrives without any waiting interval. In [5], the

authors have examined 11 heuristics for mapping jobs

to resources statically. In [6], the authors have

examined a subset of these methods that employ

immediate mode scheduling. Both these results

examine scheduling methods on an offline system.

In this work, we examine five different immediate

mode methods on an open, online heterogeneous

system: Opportunistic Load Balancing (OLB),

Minimum Execution Time (MET), Minimum

Completion Time (MCT), Switching Algorithm (SA)

and k-Percent Best (kPB). We also propose a new

method, Modified MCT, based on certain observed

heuristics. We implemented these methods and tested

them using a benchmark of instances proposed by

Braun et al. [5]. This benchmark of instances is

obtained from an expected time to compute model that

simulates the job runtimes on different nodes of a

heterogeneous system. This benchmark has been

widely used in examining heterogeneous systems [6]

and is known to be one of the most difficult

benchmarks in the literature [6].

The rest of the paper is organized as follows.

Section 2 presents the problem description. Section 3

provides an overview of the benchmark and metrics

used for evaluation. It also explains the job arrival

model that we have used to model the time interval

between job arrivals. Section 4 discusses the immediate

mode methods considered in this work. In section 5,

we provide some computational results of our

simulation and in section 6, we present our

observations. We end in section 7 with conclusions and

future work.

†
Student authors from Birla Institute of Technology and

Science, Pilani – Goa Campus.

2. Problem Description

We consider a scheduling problem where jobs are to

be allocated immediately to resources in a global,

heterogeneous and dynamic environment. The

allocation should be as fast as possible, while at the

same time optimizing several criteria such as response

time, utilization and slowdown (explained in section

3).

The jobs have to be completed on a unique resource.

There are no dependencies between jobs (each job is

independent). The arrival rate of jobs determines the

system load.

Since we consider a heterogeneous environment, the

processing capacity of each resource in the system may

vary significantly and thus yield different runtimes for

a particular job on different machines. In order to

formalize our definition, we use the ETC matrix model

to simulate task and machine heterogeneity (explained

in section 3).

An instance of the problem consists of:

- A number of independent jobs to be scheduled

- A number of heterogeneous machines

(resources)

- The job’s expected time to compute on each of

the machines. (This depends on the workload of

each job and computing capacity of each

machine). The ETC matrix: ETC[i][j] is the

expected execution time for job i on machine j.

- Ready time (ready[m]) the time when machine

m will finish previously assigned jobs.

In this work, we assume that the computation time

for each job is known accurately before the job begins

execution.

3. Benchmarks and Metrics Used

Real world heterogeneous systems, such as a

computational grid, are complex combinations of

hardware, software and network components. In order

to make fair comparisons of different techniques used

for different systems, we require a benchmark

simulation model. Braun et al. [5] describes such a

model for HC environments taking into consideration

task heterogeneity, machine heterogeneity and

consistency. Essentially, the running time of each

individual job on each processor (resource) must be

known and this information can be stored in an

‘expected time to compute’ (ETC) matrix. A row in an

ETC matrix
1
 contains the ETC for a single job on each

of the available processors and so any ETC matrix will

have n x m entries where n is the number of jobs and m

is the number of processors. A simple ETC matrix with

4 jobs and 2 processors is given in table 1. This is a

consistent ETC matrix, as processor 1 is consistently

faster than 2.

Table 1. An example of ETC matrix.

 Processor 1 Processor 2

Job 1 3 5

Job 2 8 10

Job 3 1 6

Job 4 7 12

Thus, the ETC matrix model is able to capture most

important characteristics of the heterogeneous system

as well as the independent jobs.

In order to examine scheduling methods on an

online open system, we also need to model the arrival

rate of jobs. The arrival rate of jobs determines the

system load. Various performance metrics (such as

response time) are studied with respect to system load

when studying online open systems [7]. We assume a

scheduling environment where jobs arrive in a Poisson

process. The mean inter arrival time is adjusted to

match the desired load on the system. Hence, for

instance, a mean inter arrival time of 0 units would put

our system on infinite load (fig. 1).

Figure 1. System Load and inter arrival times.

Various metrics have been described in the

literature for performance evaluation[7]. The most

common metric used for open online systems is

response time(fig. 2).

Figure 2. Commonly used metrics.

All Systems

Online

Offline
(Makespan)

Open
(Response time)

Closed
(Throughput)

1
We have used the range based method for ETC Matrix

calculation with ranges for Rmach being 10 and 1000; Ranges

for Rtask being 100 and 3000 (lo and hi) as proposed by Braun

et al.

Response Time. For online open systems, response

time is the metric used for performance evaluation.

Response time of a job is defined as the sum of the

waiting time and execution time.
Responsetime[i]= ready[schedule[i]] + ETC[i][schedule[i]]

Load and Utilization. Since we consider only rigid

jobs for our analysis, the load and utilization are

completely determined by the arrival rate of jobs [7].

System load can be increased by reducing the inter-arrival

times between jobs. We model the arrival process as a

memory-less poisson process with a mean inter arrival

time that can be changed to adjust system load. The load

variable we used is the arrival rate[7].

Bounded Slowdown. Slowdown is defined as the

runtime of a job (sum of waiting and execution times) on

a system when its loaded divided by runtime on the

system when it is dedicated and not loaded. The

importance of slowdown as a metric is that it is

normalized as compared to the metric response time,

which places greater emphasis on long jobs[7]. The

problem with slowdown is that extremely short jobs with

reasonable delays lead to excessive slowdown values. A

commonly accepted solution is to apply a lower bound on

job runtimes. This is known as Bounded Slowdown.

4. Immediate Mode Methods

In this work, we consider six immediate mode

methods, namely Opportunistic Load Balancing (OLB),

Minimum Execution Time (MET), Minimum Completion

Time (MCT), Switching Algorithm (SA), k-Percent Best

and Modified MCT.

OLB: This method assigns a job to the earliest

available machine. This method does not take into

account the execution times of the job. It considers the

ready times of the machines and assigns the job to the

machine with the least ready time. If two or more

machines are idle, one of them is chosen arbitrarily. This

method tries to keep each of the machines as loaded as

possible and thus gives highest system utilization and load

balancing.

MET: This method assigns a job to a machine that will

execute it fastest. It does not consider the ready times of

the machines and allocates jobs only on the basis of its

expected time to compute. A disadvantage of this method

is that it scores poorly on load balancing. However, the

advantage is that jobs are allocated to machines that best

suit their requirements regarding execution time. This

method is also known as LBA (Limited Best Assignment)

and UDA (User Directed Assignment)

MCT: This method assigns a job to the machine that

gives the least completion time. The completion time of a

job i is the sum of the waiting time and execution time of

the job.
completion[i]=ready[schedule[i]] + ETC[i][schedule[i]]

In this case, it is possible that a job is assigned to a

machine that does not have the smallest execution time. It

is also possible that a job is assigned to a machine that

does not get idle earliest. However the completion time

for the job would be minimum on the machine scheduled.

A disadvantage of MCT is that it may not give the least

execution time for jobs.

SA: This method tries to combine the best features of

MET and MCT. It switches between MCT and MET to

achieve good load balancing and execution time

respectively. The implementation of this method first

calculates the ratio of minimum and maximum ready

times in the system:

r=rmin / rmax

The value of r is compared to two threshold values, rl

and rh, where 0 < rl < rh < 1. Initially, r=0.0, and SA starts

scheduling according to MCT until r becomes greater than

rh. Once r is greater than rh, SA starts using MET to

allocate jobs until r becomes lesser than rl and then a new

cycle starts again.

kPB: This method first selects a subset of resources

according minimum execution time (from the ETC

matrix). It selects k% best resources, and within this

subset, MCT is used. For k=100, kPB performs as MCT,

while for k=100/nb_machines it behaves as MET. This is

the only method that simultaneously tries to achieve the

objectives of MCT and MET. One major disadvantage of

kPB is that a machine with low processing capability may

never be selected in the k% best subset and so will always

remain idle or less loaded.

Modified MCT: We note that the OLB method

provides highest system utilization values and keeps the

system load balanced. The drawback is that it may

schedule the jobs on inefficient machines where the

execution time is very high. However, for ‘short jobs’,

most of the time spent is in the waiting queue, whereas

most of the time spent by a ‘long job’ is during execution.

In this method, we first check the size of the job. If it’s a

small job, it is scheduled on the earliest idle

machine(OLB). For medium and large jobs, the MCT

method is used for allocation. The advantage of this

method is that it increases system utilization and improves

load balancing by allocating jobs to idle machines. The

penalty incurred due to allocation on inefficient machines

is very less for short jobs, which usually spend much

larger times in the waiting queue.

5. Results

We implemented each of the immediate mode

methods for the allocation of jobs to resources. The

computation is a two step process: first, the ETC

matrices and inter arrival times are calculated, then a

simulation of the jobs and their execution is done while

examining the metrics for performance evaluation. The

immediate mode methods OLB, MET, MCT and SA

have a time complexity of O(N.M) where N is the

number of jobs and M is the number of machines in

our system. The time complexity of the kPB method is

O(N.M.logM).

We have used a common set of benchmark

instances of the ETC model to allow a fair comparison.

We have used 8 different types of benchmark instances

denoted by the notation u_x_yyzz where

- u means that a uniform distribution has been used

to generate the benchmark instance.

- x denotes the type of consistency (c-consistent, i-

inconsistent). We have considered fully consistent

and inconsistent cases in our simulation. A

consistent ETC matrix model means that if a

machine mi executes a job q faster than machine

mj, then mi executes all jobs faster than mj.

- yy denotes the job heterogeneity (hi-high, lo -

low).

- zz denotes the machine heterogeneity.

The resource utilization of each method at different

load conditions is presented in figure 3. The mean

completion, waiting and execution time for a particular

instance on a moderately loaded system is presented in

figure 4. We use the job arrival rate as our load

variable and by ‘moderately loaded’ we mean that the

arrival rate of job is approximately equal to the service

rate of our system. The bounded slowdown values are

presented in figure 5. We provide the response time for

each method as a function of system load in figure 6.

Figure 3. Average Resource Utilization.

Figure 4. Average wait, execution and

completion times for a moderately loaded system.

Figure 5. Bounded Slowdown Values. (u_i_hihi is
an exceptional case.)

6. Observation

We found that response times provide greater

disparity between the different methods at high system

loads (fig. 5). Overall, in terms of response times, MET

performs poorest for consistent instances, OLB

performs poorly for inconsistent ones, while MCT and

Modified MCT perform best. However the resource

utilization of both MET and MCT is low (figure 3).

Resource utilization and load balancing are

important metrics in a grid environment. The Modified

MCT algorithm achieves much better resource

utilization than all other methods (except OLB) at the

cost of slightly degraded response time.

The SA and kPB methods provide response times

and utilization values between those of MCT and

MET. This is particularly evident when we consider

the average waiting, execution and completion time of

all the methods for a single instance as shown in figure

4. In this particular case, MET achieves best execution

times, but worst waiting times for jobs. MCT provides

the best completion time. SA and kPB have completion

times higher than MCT but lower than MET.

The bounded slowdown values are the worst for

MET in all cases but are more pronounced for

consistent instances. With this metric, OLB is the best,

except for u_i_hihi where where it gives a higher

slowdown than MCT(fig. 5).

7. Conclusions and future work

In this work, we have examined a set of methods for

dynamic scheduling of jobs on an open online

heterogeneous system, with the unique characteristic

that they schedule jobs as soon as they arrive. We have

examined most of the immediate mode methods from

the literature and have tested them on the benchmark

provided by Braun et al[5]. The results of our

simulation show that none of the methods perform best

in all the evaluated metrics. Their performance depends

on the machine and job heterogeneity and system load.

In the future, we plan to test these methods using a

simulation model derived from the queue traces of

existing heterogeneous systems. We also plan to

improve our scheduling method to optimize different

metrics for different jobs: bounded slowdown for short

jobs and response time for long jobs.

8. References

[1] I. Foster and C. Kesselman., "The Grid - Blueprint for a

New Computing Infrastructure",Morgan Kaufmann, 1998.

[2] R. Buyya., "Economic-based Distributed Resource

Management and Scheduling for Grid Computing" Phd

thesis, Monash University, Melbourne,Australia, 2002.

[3] H. Casanova and J. Dongarra, "NetSolve: Network

enabled solvers.", IEEE Computational Science and

Engineering, 1998, pp.55-67.

[4] V. D. Martino and M. Mililotti, "Sub optimal scheduling

in a grid using genetic algorithms", Parallel Computing,

2004, pp. 553-565.

[5] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran,

A. Reuther., J. Robertson, M. Theys, and B. Yao, "A

comparison of eleven static heuristics for mapping a class of

independent tasks onto heterogeneous distributed computing

systems", Journal of Parallel and Distributed Computing,

2001, pp 810-837.

[6] F. Xhafa, L. Barolli, A. Durresi, "Immediate mode

scheduling of independent jobs on computational grids", 21st

International conference on Advanced Networking and

Applications, 2007.

[7] Dror. G. Feitelson, L. Rudolph, "Metrics and

Benchmarking for Parallel Job Scheduling", Proceedings of

the workshop on Job Scheduling Stragetis for Parallel

Processing, 1998.

Figure 6. Response time as a function of System Load

