
Middleware for Long-Running Applications on
Batch Grids

Sivagama Sundari M∗, Sathish S Vadhiyar∗, Ravi S Nanjundiah†
∗Supercomputer Education and Research Centre
†Centre for Atmospheric & Oceanic Sciences
Indian Institute of Science, Bangalore, India

sundari@rishi.serc.iisc.ernet.in, vss@serc.iisc.ernet.in, ravi@caos.iisc.ernet.in

Abstract—Computational grids with multiple
batch systems (batch grids) can be powerful in-
frastructures for executing long-running multi-
component parallel applications. In this paper, we
have constructed a middleware framework for exe-
cuting such long-running applications spanning mul-
tiple submissions to the queues on multiple batch
systems. We have used our framework for execution
of a foremost long-running multi-component appli-
cation for climate modeling, the Community Climate
System Model (CCSM). Our framework coordinates
the distribution, execution, migration and restart of
the components of CCSM on the multiple queues
where the component jobs of the different queues
can have different queue waiting and startup times.

I. INTRODUCTION

Computational grids have been increasingly used
for executing large scale parallel applications [1]–
[3]. Many current large-scale grid frameworks [4],
[5] consist of multiple distributed sites with each
site having one or more clusters or Massively Par-
allel Processors (MPPs). Each cluster is typically
a batch system associated with batch scheduling
and queueing policies. Thus, many current grids are
composed of multiple batch systems.

In this paper, we consider execution of long
running multi-component applications on grids with
multiple batch systems (batch grids, for brevity).
We submit component jobs of the application to dif-
ferent queues of a batch grid. The jobs on different
queues can have different queue waiting times and
hence different start-up times. Hence the number

This work is supported by Ministry of Information Tech-
nology, India, project ref no. DIT/R&D/C-DAC/2(10)/2006
DT.30/04/07

The student author is Sivagama Sundari M

of active batch systems available for execution can
vary at different times. Batch queue systems are
also associated with limits for execution time for
a job. The execution time limits are typically few
days while long-running applications can execute
for several weeks. Hence a long running applica-
tion should span multiple submissions in each site
where the application should be checkpointed and
continued from the previous submission. Hence,
a framework that supports execution of multiple
components of an application across a time-varying
set of active queues is needed for the execution
of long-running multi-component applications on
batch grids.

Our work involves the development of such
a middleware framework for long-running multi-
component applications. We have employed a novel
execution model that involves making use of all
active resources by scheduling and rescheduling the
application components whenever the set of active
batch systems changes. Our middleware frame-
work automatically coordinates the execution of
the components on the different queues, determines
the allocation of processors in the batch systems
for the components, schedules and reschedules the
components, checkpoints and migrates the appli-
cation to a different set of available systems, and
transfers checkpoint data on the new set of systems
for continuation of the application. Our application
execution framework thus ensures maximum uti-
lization of resources available to the application.

II. RELATED WORK

There are several significant grid middleware
frameworks, like GrADS [6], [7], Cactus [8], [9],
GridWay [10] that support checkpointing, migration



and sometimes reconfiguration of long-running jobs
executed on dynamic resources. Some recent work
[11], [12] present frameworks for execution of
traditional, unmodified, legacy applications. How-
ever, none of these efforts provide a framework for
execution of an application job co-allocated across
multiple batch systems and dynamically reconfig-
ured.

In our previous work, we have conducted simu-
lation studies of the performance of the execution
of a long-running application across batch systems.
In this work, we present a middleware framework
for such execution. To our knowledge, ours is the
first work on building a framework for execution of
a long running multi-component application where
the different components are submitted multiple
times to different batch queues. The execution of
a component is stopped within the execution time
limit associated with its submission to a batch
queue and the component is submitted again to the
same or different batch queue and continued from
its previous execution.

In our model, we attempt to execute multi-
component jobs using a given set of local queues
of different clusters with existing and possibly
different job execution policies. While submissions
are made to the queues of all the clusters, an
execution of the multi-component application can
proceed when at least one of the clusters become
available for execution.

III. METHODOLOGY

In this section, we describe the application and
our grid middleware framework.

A. A long-running Multi-Component Application:
CCSM

In this work, we consider a classic and fore-
most example of a multi-component application,
Community Climate System Model (CCSM) [13], a
global climate system model from National Center
for Atmospheric Research (NCAR) [14]. It is a
MPMD application consisting of five components,
namely, atmosphere, ocean, land and ice and cou-
pler. The first four components are climate simula-
tion models corresponding to various climate sub-
systems. These components periodically exchange

QUEUE2 QUEUE3 QUEUE4

Coordinator

QUEUE1

Monitor
Job

Job
Script

Queuing System

Job
Submitter

Monitor
Job

Job
Script

Queuing System

Job
Submitter

Monitor
Job

Job

Queuing System

Job
Submitter

Monitor
Job

Job
Script

Queuing System

Job
Submitter

MPI MPI MPI
Script

Fig. 1. Grid MiddleWare Framework for Long-running
Multi-component Applications

data, typically after every few simulated-climate-
hours. The coupler is a component which coordi-
nates the communications between the other model
components. Each of the components is a moldable
parallel application, i.e., it can be executed on
variable number of processors.

CCSM is typically executed for long periods to
simulate climate systems for multiple centuries with
execution times of several weeks. To support such
long running simulations, CCSM contains restart
facilities where the application can be made to store
its execution state as restart dumps at periodic inter-
vals or after some simulated days and simulations
for an execution can be continued from the previous
executions using the restart dumps of the previous
executions.

B. Middleware Framework

Our execution framework primarily comprises of
three component daemons: a coordinator that de-
termines mapping of components to the batch sys-
tems, and schedules and reschedules the component
executions on the systems, a job monitor on each
front end node of batch systems that interfaces with
the coordinator, and the job submitter on the front
end node that repeatedly submits a CCSM job upon
completion of the previous CCSM job. Our frame-
work also consists of a CCSM job script which
executes and re-executes MPI jobs on a system
corresponding to specified mappings of components
to processors of the different active batch systems at
various points of time. The architecture is illustrated
in Figure 1.

In this section we briefly describe the three
components, their primary functions and their in-
teractions.

1) Coordinator



The coordinator daemon is the most significant
daemon and is executed on a location that
is accessible from the front-end nodes of all
the systems. It contains all the global infor-
mation about the framework. This includes
information that stays constant throughout the
duration of an experiment as well as those that
vary. The number and location of queues, the
number and characteristics of the components,
the locations of executables and restart files,
etc. are some of the static information known
to the coordinator. The set of active queues, the
times at which the queues had become active,
the previous and current CCSM configuration,
etc. are some of the dynamic information
contained in the coordinator.
Since the coordinator has knowledge of the
state of the entire system, it can take ac-
tions and/or instruct other daemons to take
actions. Some of the actions taken by the
coordinator include determining the mapping
of components to batch systems, scheduling
and rescheduling component executions, trans-
ferring restart files, etc.

2) Job Monitor
The job monitor daemon monitors the local
behavior of the job on each site. A job monitor
daemon is started corresponding to each queue
used in the framework on the front-end node of
the respective system. The job monitor notifies
the coordinator daemon of local events like
(i) the queue becoming active; (ii) the active
job on the queue is close to its execution time
limit, and (iii) the current execution has been
stopped and the job is ready for reconfigura-
tion. It does these by sending START,STOP
and STOPPED messages respectively.
The job monitor also processes the config-
uration data supplied by the coordinator at
every reconfiguration event and ensures that
the active CCSM job is suitable reconfigured.

3) Job Submitter
The job submitter is a daemon that runs on
the front-end nodes of each batch system. One
job submitter is started per batch queue. The
job submitter submits the CCSM job script
continually ensuring that at any time exactly
one such job exists in the queue (active or

inactive). The job script comprises of a loop
until timeout. In the loop, the job script waits
for a component-config file and executes using
MPI, the components on the processors as
specified in the component-config file.

C. Component Interactions

An application job is submitted to each of the
batch systems with a request for a specific number
of processors by the Job Submitter. We refer to a
job submission to a queue and the corresponding
batch system as becoming active when the job
completes waiting in the queue and is ready for
execution. When a job on a batch system is active,
it coordinates with our middleware framework and
executes some components of the application de-
pending upon the number of active batch systems
at that instant. The components executed by the
job can change when the number of active batch
systems changes. When the job is close to its max-
imum execution time-limit on the batch system, it
coordinates with the rest of our framework, creates
the necessary restart data and exits the queue. The
job submitter submits a new job after the job exits
the queue.

When a job submitted to a system becomes active
or has entered the execution state after waiting in
the batch queue, the job monitor on the system
informs the coordinator of the START status of the
job. Similarly, when the batch job on one of the
active systems is about to reach the execution time
limit of the system, the job monitor at the system
sends a STOP message to the coordinator.

The coordinator sends stop signals to the MPI
jobs executing on all active batch systems. The
MPI jobs, after receiving the stop signals, create
the restart files and stop executions. The job mon-
itors at each site then send a STOPPED message
to the coordinator. The coordinator waits for the
STOPPED message from all the previously active
batch systems.

Based on the number of active batch systems,
the coordinator then uses a genetic algorithm to
determine the schedule of execution of the multi-
component application on the set of active batch
systems. The schedule contains the set of compo-
nents and the number of processors for the compo-
nents allocated to each active system. The schedule
is sent to the job monitors of the active systems



0−1hr 1hr−12hr 24hr−34hr 34hr−35hr 35hr−36hr 36hr−45hr
0

20

40

60

80

100

120

140

Scheduling Events or Configurations in the first 45 hours (Note: 12hr−24hr is a period with no active queues)

N
um

be
r o

f P
ro

ce
ss

or
s

Dynamic Variation in Number of Processors with Configurations

 

 
Atmosphere
Ocean
Land
Ice
Coupler

Queues 1,2,3,4

Queue1 Queue1

Queue4

Queues 1,4

Queues 1,3,4

Fig. 2. Dynamic Variation in Number of Processors

Wallclock Time (in hours)

 

 

5 10 15 20 25 30 35 40 45

Atmosphere

Ocean

Land

Ice

Coupler

1

1.5

2

2.5

3

3.5

4

4.5

5

IDLE

QUEUE2

QUEUE3

QUEUE1

QUEUE4

NONE

Fig. 3. Dynamic Variation in Component to Queue
Mapping

which write the schedule to files called component-
config files. It also transfers the restart dump files
generated by the applications in the previous set
of active systems to the new schedule, and takes
a backup of the restart files for use in case of a
complete system failure, thereby providing fault-
tolerance. It then informs the batch jobs of the
active systems to resume execution. The batch job
of each active system reads its component-config
and executes its set of components on the set of
its processors as specified in the component-config
file.

The interactions between the components of our
framework are illustrated in Figure 1.

IV. EXPERIMENTS AND RESULTS

We tested our middleware framework by execut-
ing CCSM across four batch queues in three clus-
ters, namely, fire-16, a AMD Opteron cluster with
8 dual-core 2.21 GHz processors, fire-48, another
AMD Opteron cluster with 12x2 dual-core 2.64
GHz processors, and varun, an Intel Xeon cluster
with 13 8-core 2.66 GHz processors. Four queues
were configured on these systems with OpenPBS

[15]: one queue of size 14 on fire-16, a queue of
size 48 on fire-48, two queues of sizes 32 and 64
on varun.

External loads were simulated by submitting
synthetic MPI jobs to the queueing systems based
on the workload model developed by Lublin and
Feitelson [16]. The maximum execution time limit
for all jobs on all queues was set to 12 hours.
The coordinator was started on the front-end node
on fire-16. A job monitor and a job submitter
corresponding to each queue were started on the
front-end of its cluster.

As the jobs on each of the four queues became
active and inactive, the CCSM runs were automati-
cally reconfigured and restarted by our framework.
Our framework executed CCSM for a period of 3
days during which climate of 3 years, 7 months and
21 days was simulated.

The number of processors of the CCSM compo-
nents on the different batch queues during the first
six configurations (45 hours) of our experiment are
shown in Figure 2. As can be seen the component
sizes and hence the number of processes used
for CCSM execution varies with the set of active
queues.

Figure 3 shows the location of execution of
various components along the execution time-line
as the configurations change. The white region in
the figure indicates a phase during the experiment
during which there were zero active systems, i.e.,
when the CCSM jobs on all the batch systems
where waiting in the queue. The number of different
colors (except white) along the vertical correspond-
ing to a time-instant indicates the number of active
sites. As can be seen, the number of active sites in
the figure takes all the possible values from 0 to 4.

The figures show during the first hour that
queue1 is active and all the components are exe-
cuted on a very small number of processors within
queue1. Now, queues 2 to 4 all become active
within the time it takes for the CCSM job on
queue1 to stop and become ready for reconfigura-
tion. Hence, the next configuration has components
executing on all 4 queues. Atmosphere and Ocean
are automatically migrated by the framework from
queue1 to queue2 and queue4 respectively, while
Ice and Coupler are both migrated from queue1 to
queue3. Note that, at this point, land is not migrated



but is executed on a larger number of processors
on queue1 itself as indicated in the Figure 2. After
around 11 hours of execution on this configuration,
all queues are close to time-out. All batch systems
at this stage become inactive as indicated by the
white region. At the 24th hour, queue1 becomes
active and all components are migrated to queue1.
The configuration here is similar to the first config-
uration as can be seen in Figure 2. In the 34th hour,
when queue4 also becomes active, all components
except atmosphere migrate from queue1 to queue4,
and so on.

Thus, the experiment has demonstrated that our
middleware framework can be effectively used for a
robust long-running execution on multiple clusters
with independent batch queueing systems across an
open network. We have also demonstrated that it
can handle large dynamic variations in the number
of active queues and processors at each reconfig-
uration event, thus supporting effective use of the
resources available on all the sites.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have developed a middleware
framework for execution of multi-component appli-
cations on batch grids consisting of multiple batch
systems. The framework was demonstrated with a
foremost multi-component application, CCSM. The
framework performs complicated tasks including
coordination of the different startup times of the
component jobs on the different batch queues and
rescheduling of the component jobs based on the
number of active systems for execution. We have
demonstrated the framework with a four-site exe-
cution. In future, we plan to investigate different
strategies for scheduling and rescheduling multi-
component jobs on batch systems.

REFERENCES

[1] C. Mueller, M. Dalkilic, and A. Lumsdaine, “High-
Performance Direct Pairwise Comparison of Large Ge-
nomic Sequences,” IEEE Transactions on Parallel and
Distributed Systems, vol. 17, no. 8, pp. 764–772, 2006.

[2] X. Espinal, D. Barberis, K. Bos, S. Campana,
L. Goossens, J. Kennedy, G. Negri, S. Padhi, L. Perini,
G. Poulard, D. Rebatto, S. Resconi, A. de Salvo, and
R. Walker, “Large-Scale ATLAS Simulated Production
on EGEE,” in E-SCIENCE ’07: Proceedings of the Third
IEEE International Conference on e-Science and Grid
Computing, 2007, pp. 3–10.

[3] M. Gardner, W. chun Feng, J. Archuleta, H. Lin, and
X. Mal, “Parallel Genomic Sequence-Searching on an
Ad-hoc Grid: Experiences, Lessons Learned, and Impli-
cations,” in SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, 2006, p. 104.

[4] “TeraGrid,” http://www.teragrid.org.
[5] “UK e-Science,” http://www.rcuk.ac.uk/escience/default.

htm.
[6] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster,

D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman,
J. Mellor-crummey, D. Reed, L. Torczon, and R. Wolski,
“The grads project: Software support for high-level grid
application development,” International Journal of High
Performance Computing Applications, vol. 15, pp. 327–
344, 2001.

[7] S. S. Vadhiyar and J. J. Dongarra, “Self adaptivity in
grid computing,” Concurrency & Computation: Practice
& Experience, vol. 2005, 2005.

[8] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu,
T. Radke, E. Seidel, and J. Shalf, “The cactus worm:
Experiments with dynamic resource discovery and allo-
cation in a grid environment,” International Journal of
High Performance Computing Applications, vol. 15, p.
2001, 2001.

[9] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. chris-
tian Hege, G. Lanfermann, A. Merzky, T. Radke, E. Sei-
del, and J. Shalf, “Cactus tools for grid applications,”
2001.

[10] E. Huedo, R. S. Montero, and I. M. Llorente, “A
framework for adaptive execution in grids,” Softw. Pract.
Exper., vol. 34, no. 7, pp. 631–651, 2004.

[11] L. Du, Y. Wu, and C. Wang, “Component based legacy
program executing over grid,” in GCC ’07: Proceedings
of the Sixth International Conference on Grid and Co-
operative Computing. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 558–565.

[12] N. Markatchev, C. Kiddle, and R. Simmonds, “A frame-
work for executing long running jobs in grid environ-
ments,” in HPCS ’08: Proceedings of the 2008 22nd In-
ternational Symposium on High Performance Computing
Systems and Applications. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 69–75.

[13] “Community Climate System Model (CCSM),” http://
www.ccsm.ucar.edu.

[14] “The National Center for Atmospheric Research
(NCAR),” http://www.ncar.ucar.edu.

[15] “Pbs gridworks: Openpbs,” http://www.openpbs.org.
[16] U. Lublin and D. Feitelson, “The Workload on Parallel

Supercomputers: Modeling the Characteristics of Rigid
Jobs,” Journal of Parallel and Distributed Computing,
vol. 63, no. 11, pp. 1105–1122, 2003.


