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ABSTRACT 

 
Although a lot of research has been done in the field of 

automatic parallelization, the extent of parallelization that 

can be identified and extracted is still minimal compared to 

what can be potentially achieved. Thus, the gains in terms of 

performance improvement are minimum. 

 

Intent-based compilation, an approach presented in this 

paper to address this shortcoming, is based on identifying 

the intent of the programmer from the given serial code and 

generating the best possible implementation for a given 

architecture. Based on a collection of algorithmic variants 

the most parallelizable variant for the given architecture is 

then substituted for the pertinent slices in the identified code 

to achieve a higher performance gain than can be achieved 

by using just automatic parallelization. Three very 

contrasting studies have been used to illustrate the 

challenges involved in the process. A work-in-progress tool 

and results obtained are also described. Initial findings gave 

speedups close to manual parallelization. 
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1. INTRODUCTION 

 
With the rapid proliferation of multi-cores and 

multiprocessors in embedded systems (MPSoCs), PCs, 

GPUs, game consoles and in the HPC domain, the need for 

sophisticated software development tools that support these 

parallel architectures becomes extremely important [21]. As 

the existing programmer community, in general, has been 

educated in sequential programming paradigms a 

revolutionary shift to parallel paradigms and parallel 

thinking would be needed to cater to the new need of parallel 

applications for these platforms. 
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Although this would theoretically be the ideal case, it would 

require time as many topics in the undergraduate curricula 

may need to be changed [14] for parallel thinking to become 

mainstream. The other, albeit temporary, solution that 

researchers agree on is to allow the programmers to continue 

to code sequentially as currently been done but support them 

with sophisticated tools to help parallelize the sequentially 

written code [12]. Indeed, over the past few decades or more 

there has been a large volume of work done on automatic 

parallelization. Although mature, the progress in this field is 

only minimal [6]. The amount of speedup obtained using 

existing commercially available parallelization tools as 

compared to what can be potentially obtained with manual 

parallelization reflects this. 

 

There are two main reasons that may be attributed to this. 

The first is that the sequential code is assumed to be coded 

for the purpose of parallelization. To clarify, an algorithm 

used in the code that cannot be parallelized or cannot be 

easily parallelized is not replaced with another more 

parallelizable algorithm that solves the same problem. 

Rather, the bottleneck is retained. This is the case with 

almost all existing parallelization approaches including [17, 

13, 10, 6], to name a few. Additionally, if the code is 

subjected to restructuring (different from just refactoring [9]) 

before parallelization, it may reduce coupling between 

functions and components [3] and may aid in exposing more 

parallelization. 

 

The second reason is that majority of the automatic 

parallelizers and compilers convert the sequential program 

into a binary executable format. This leaves very little for 

the parallel developer to work on in case additional 

parallelization could be manually extracted.  

 

Intent-based compilation is a methodology presented in this 

paper that addresses the above shortcomings. The next 

section briefly describes the methodology. The third section 

illustrates the challenges faced when using intent-based 

compilation with the help of three case studies. The work-in- 

progress tool is described in the following section. The last 

section gives the conclusion and briefly highlights the future 

work. 



 

2. INTENT-BASED COMPILER 

2.1 Introduction 

 
To parallelize high-performance systems, both conventional 

data-flow optimizations and high-level transformations are 

necessary to improve parallelism and memory hierarchy 

performance. Currently, there are two main choices for a 

developer to choose from – automatic parallelization and 

manual parallelization. As mentioned earlier, automatic 

parallelization has thus far not been successful at extracting 

scalable parallelism from general programs [6]. The other 

option, manual parallelization, involves time consuming 

hand optimizations performed for a specific number of cores 

and for a specific platform. Intent-based compilation (IBC) 

is a meet-in-the-middle strategy. It is not a radically new 

compiler methodology but rather involves the introduction 

of two additional, but essential steps, to the automatic 

compilation technique. The main premise of intent-based 

parallelization is that a given code or algorithm is not 

assumed to be ’the perfect fit’ for the given architecture. To 

illustrate, consider the following case. Conventional 

approaches attempt to parallelize a given algorithm by 

extracting explicit parallelism, efficiently utilizing the 

memory hierarchy and various other techniques. However, if 

the given algorithm is embarrassingly serial, even the best of 

the available parallelizing compilers would fail to achieve 

any speedup. An intent-based compiler instead seeks to 

understand the intent of the given algorithm - what is the 

program attempting to do or what is it trying to solve? Once 

the intent is identified and with a given library of algorithms 

that can achieve the same goal, a more parallelizable 

alternative is substituted for the existing one. The next sub-

sections explain the methodology in more detail. 

 

2.2 Methodology 
 

The intent-based compilation process comprises the 

following main steps 

 

1. Identification of programmer intent in code. 

2. Program restructuring. 

3. Processing compiler directives (if any). 

4.  Identification of explicit parallelism. 

 

The third and fourth steps are invariably used in existing 

automatic parallelization techniques and not unique to intent 

based compilation and, thus, will not be described in this 

paper. Intent-based compilation, in addition, introduces the 

first two steps to the compilation process. Again, these steps 

are not totally unique and may be implicitly performed 

manually during hand-parallelization of code. Intent-based 

compilation explicitly include these steps in the compilation 

process and attempts to automate them. The first step, i.e. 

identification of programmer intent in code, comprises three 

sub-steps. The first is the identification of programmer intent 

in the sequential code. Identification of programmer’s intent 

is an exercise in pattern matching based on a collection of 

sequential design patterns, or dwarfs as used in [4], and its 

variants that commonly occur in HPC applications. 

Correctly identifying intent in code by matching it against a 

library of algorithmic variants is a very challenging and an 

important step. Once a match is identified, the next sub-step 

involves the selection of the most optimal algorithm from a 

set of architectural variants depending on the available 

hardware architecture. The last sub-step involves the 

substitution of the algorithm or portion of code for the 

existing portion. This involves the identification of the 

pertinent slices [16] in code related to that algorithm that 

need to be replaced and or modified. This is further 

explained in section 3.1 using a case study.  

 

The second step is the program restructuring done and is 

performed considering the entire code. This is an involved 

step which includes different operations ranging from basic 

operations like the removal of dependencies and refactoring 

to more complex ones like re-arrangement of code for 

effective cache utilization. As completely automating this 

step is challenging, human decision making and intervention 

may be required in this step. Two options exist at the end of 

this step - either the modified code can be parallelized using 

existing automatic compilers or a code-to-code 

transformation applied to convert it into one using OpenMP, 

Message Passing Interface or a mix of both libraries for 

possible further manual parallelization. The challenges and 

variations faced during this step are highlighted in sections 

3.2 and 3.3 using two separate case studies. 

 

2.3 Pattern Matching 

 
To store, match, capture and understand the intent of the 

developer or algorithms present in code, a collection of 

patterns in the form of regular expressions is defined. This 

pattern tree is categorized into a hierarchy with each branch 

from the root denoting a separate dwarf ([4]) or design 

pattern commonly used in the HPC domain. Branches from 

the root may have different depths and breadths depending 

on their algorithmic and architectural variants. For example, 

the dense matrix-matrix or matrix vector multiplication has 

very few algorithmic variants and will have a smaller depth 

and breadth while the branch denoting the TSP problem will 

comprise a large sub-tree with a relatively larger height and 

breadth as the algorithmic variants in this case are much 

higher. This is further explained in the next section.  Having 

a well defined and comprehensive collection of both 

algorithmic and architectural variants for commonly 

occurring patterns is essential to the IBC tool (described in 

Section 4) 

. 

3. CASE STUDY 
 

To illustrate the intent-based compilation process, three very 

contrasting examples are used as case studies. The first is 

code used in the study of a problem in Computational Fluid 

Dynamics. The code used for the study represents a category 

of applications that have been developed by domain 

engineers and scientists with little programming and 

software engineering experience. The developed code, from 

the software engineering perspective, is ’unfit’ for 

immediate automatic parallelization as-is and needs to be 

polished and restructured before subjecting it to profiling, 

bottleneck identification and the rest of the parallelization 



process. The second is dense matrix-matrix multiplication, 

an operation that is a basic kernel used in many Grand 

Challenge Applications (GCA) [11]. It is one of the simplest 

operations in HPC that can be manually parallelized and 

different approaches to parallelize it have been presented in 

literature. The third example used as a case study is the 

traditional Travelling Salesman Problem (TSP). Although 

many approaches exist in literature to solve the TSP, it 

presents a difficult challenge from the automatic compilation 

point of view. The next three sub sections describe these 

challenges in more detail. 

 

3.1 Conjugate Heat Transfer 
3.1.1 Introduction 
A category of researchers working on real world Grand 

Challenge Applications have limited programming and 

Software Engineering experience and do not have access to 

funds that can enable them to hire developers to help them 

parallelize their software [2]. The paper takes one such 

example to illustrate why restructuring of code is important 

in such cases in order to achieve the maximum possible 

speedup using an automatic parallelizer.  

 

The code used for this study was developed to understand 

the Conjugate Heat Transfer problem associated with a 

rectangular nuclear fuel element washed by upward moving 

coolant. The code developed over a period of 3 years is 

fairly mature and results obtained using the code have been 

published in various journals in the CFD field. The code had 

about 1800 LOC with 31 functions and was developed in-

house by a single developer with a Mechanical Engineering 

background and with limited programming and Software 

Engineering experience. 

 

3.1.2 Parallelization Process 
Automatically parallelizing this code was not a good option 

as the code violated many basic software engineering 

principles as described in [2]. A few examples are given 

below for illustration 

 

• Excessive and sometimes unnecessary use of global 

variables 

• Unnecessary separation of loops adding to the size of 

code 

• Functions (methods) without input parameters or return 

value. Global variables were used as substitute for both 

purposes 

• Multiple functions (methods) with similar functionality 

and few differing statements 

• Excessive use of file input-output operations. 

 

 As the code had multiple loops spread across multiple 

functions the bottlenecks were spread out. Even manual 

parallelization of such code, without a deep understanding of 

the domain, would prove to be difficult. Also, the potential 

to expose maximum parallelism in such an application with 

an automatic parallelizer would not be much. Such code 

needs to be first restructured before any attempt is made to 

parallelize it. 

 

 

 

3.1.3 Challenge Factor 
Medium to High. As the number of ways an application can 

be coded is large, even manually restructuring a program to 

obtain optimized code can become difficult. Automating this 

for a moderately sized code will indeed be challenging. 

 

3.2 Matrix multiplication 
3.2.1 Introduction 
Dense matrix-matrix multiplication is an important operation 

in the field of scientific computation and has been a topic of 

great interest to computer scientists for over forty years. 

There has been a lot of work presented in literature to reduce 

the time complexity of O(n
3
) of the traditional brute force 

matrix-matrix multiplication. Strassen’s [20] work initially 

brought down the complexity to O(n
2.807

). This was 

followed by Coppersmith and Winograd’s algorithm [8] 

which brought it further down to from O(n
2.376

). For large 

matrices, however, this still takes an extremely large time 

when run on single-core processor desktop PCs. Moreover, 

these algorithms are not trivial to implement and remain 

obscure among the mainstream programmers who have been 

educated with the traditional and simple three nested-loop 

approach. Besides these, there are very few other popular 

variants for implementing matrix multiplication sequentially. 

 

3.2.2 Parallelization Process 
Consider the automatic parallelization of a typical, 

sequentially coded simple dense n x n matrix-matrix 

multiplication algorithm. This algorithm requires n
3
 

multiplication and n
3
 addition, leading to a sequential time 

complexity of O(n
3
). The independence between iterations 

of the two outer loops makes parallelization simple. 

Theoretically, with p ≥ n
2
 processors, a parallel time 

complexity of O(n
2
) is easily achievable. For this simple 

case and given a large number of processors, the theoretical 

lower bound of Ω(n
2
) can be achieved by any average 

automatic compiler. 

 

 However, when p < n
2
, an automatic compiler may not be 

able to achieve the maximum potential speedup. Consider 

for example, a distributed network of workstations. Given a 

sequential code, automatically dividing the matrices into 

appropriately sized blocks or stripes based on the matrix 

size, the cluster size, cluster topology and processor types 

available within the cluster while optimally utilizing the 

multi-level cache hierarchy and optimally balancing the 

loads between processors and cores is certainly non-trivial. 

Moreover, for a GPU (NVIDIA) implementation, automatic 

parallelization of the sequential code would be far from 

ideal. This is because code optimized for a GPU involves a 

manual translation that would involve replacing simple C 

statements present in sequential code with CUDA specific 

code including the creation of new kernels, including 

statements for data transfers between host and device 

memory hierarchies of the GPU or introducing explicit calls 

to functions present in the CUBLAS libraries [19] for matrix 

multiplication. Although there are approaches that translate 

OpenMP code to a CUDA implementation [5], there is 

limited literature that explains how this can be achieved 

using sequentially written code.  



 

Intent-based compilation, on the other hand, identifies the 

intent of the programmer - matrix multiplication in this case 

and appropriately replaces the pertinent slides [16] with the 

most appropriate implementation for that particular 

architecture using appropriate OpenMP, MPI and CUDA 

calls. 

 

3.2.3 Challenge Factor 
Easy to medium. As the algorithmic variants for dense 

matrix-matrix multiplication are small and the problem has 

been well studied, parallelizing sequential code in this case 

is not very difficult. However, optimizing code to achieve 

maximum performance for a given architecture can pose 

certain difficulties considering the different choices 

available. For example, the documentation available for 

programming the NVIDIA GPU using CUDA lists about 

eleven variations, including calls to the CUBLAS library. 

 

3.3 Travelling Salesman Problem 
3.3.1 Introduction 
This case study, in general, represents the optimization class 

of problems used in many domains. One such well studied 

optimization problem is the Travelling Salesman Problem 

(TSP). The last century has seen various approaches 

presented towards solving the TSP. These range from exact 

algorithms (brute force) for solving the problem for around 

30 cities (nodes), to branch-and-bound approaches [15] for 

over 60 cities to genetic algorithms [18], progressive 

improvement and branch-and-cut for a much higher number 

of cities. The Concorde TSP Solver [7], for example, 

recently solved an instance with 85,900 points taking over 

136 CPU years. Other approaches to solve the TSP are as 

Nearest Neighbor, Insertion algorithms, Match Twice and 

Stitch (MTS), Convex Hull, Lin-Kernighan, k-opt heuristic, 

Ant colony optimization, Tabu Search and Simulated 

Annealing, to name a few. 

 

The important point to note is that all these algorithmic 

variants seek to solve the same optimization problem – that 

of having a salesman visit all the given cities once and return 

to the starting point covering the least possible distance. For 

a given architecture, the number of cities and the application 

domain, one approach might be more suitable than the other 

. 

3.3.2 Parallelization Process 
When compiling code for the TSP (and other similar 

problems), there exist two very interesting alternatives from 

the intent-based compilation point of view. Having 

identified the intent in sequential code, should the compiler 

replace the algorithm with its algorithmic-variant or replace 

the algorithm with its architectural-equivalent? To clarify, if 

the compiler identifies the intent as the TSP problem being 

solved using the Genetic Algorithm approach should it 

replace the affected code with the Concorde equivalent 

(algorithmic-variant), for example, or replace it with code 

also using a Genetic Algorithm approach but optimized and 

parallelized specifically for a 64-processor shared memory 

supercomputer (architectural-variant)? Problems that fall in 

this class of application and other similar ones are 

hierarchical problems consisting of solution alternatives at 

two levels or more. Additionally, these sub-problems also 

have algorithmic variants. For example, there are various 

ways of solving the TSP problem using genetic algorithm-

based approaches – using different crossover and mutation 

operators, fitness functions, population size, etc. Moreover, 

for parallelizing any genetic algorithm-based approach 

unique decisions need to be taken before parallelization. For 

example, the following questions need to be precisely 

answered during algorithm formation as even slight 

variations can result in large deviations between results. 

 

1. Should each processor operate independently on 

isolated sub-populations or should each processor execute a 

portion of the algorithm? 

2. If the former, should inter-processor crossover or 

migration be used? If yes, which model [22]? 

3. Which crossover operation [18] should be used? 

4. How to decide on the mutation rates, termination 

conditions, and other genetic algorithm specific intricacies? 

 

Similar variations exist when solving using the Ant Colony 

Optimization and other methods. 

 

3.3.3 Challenge Factor 
High to Extremely High. As large algorithmic variants exist 

for this category of problems, deciding on which one to 

substitute from among the large available set of algorithmic 

variants is challenging. The first step when applying the 

intent-based compilation approach to this and other similar 

hierarchical problems would be to invite human intervention 

to some extent. Additionally, a comprehensive collection of 

algorithmic variants and architectural variants for each 

algorithm would need to be created and maintained. The 

Pattern Tree creation and maintenance is an intense exercise 

and its description is beyond the scope of this paper. 

 

4. DESCRIPTION OF TOOL 

 
The tool used for intent-based compilation has been 

developed on the Linux platform and is based on Perl, the 

GNU toolkit and MPICH libraries. The compilation, as 

described earlier and as shown in Figure 1 is a two-step 

process. In the first-step, the tool parses a correct sequential 

C program, identifies the developer intent in code, maps the 

intent to the appropriate algorithmic variant present in the 

Pattern Tree, identifies the pertinent slices in code that need 

to be modified and, based on this knowledge, translates the 

sequential code into code consisting of OpenMP directives 

and MPI calls. In the second-step, the intermediate code is 

compiled into an executable for a particular hardware 

architecture as specified in the user-supplied hardware 

architecture configuration file. This additional step of 

intermediate code generation provides additional flexibility 

for further manual hand optimizations, if needed. This work-

in-progress tool, currently, is limited to the translation of 

sequential code containing the dense matrix-matrix 

multiplication kernel and has been tested for different values 

of m x n. The parallelized code was executed on a Linux 

cluster of dual-core PCs. Processor/core utilization achieved 

was similar to that obtained with hand-optimized code. 

Initial findings and results obtained using the tool have been 



published earlier in [1]. The following sections describe the 

methodology followed in finding the hot spot of the program 

particular to the IBC tool shown in figure 1. 

 
Figure 1: Tool for Intent-Based Compilation 

 

5. CONCLUSION 
Research on automatic parallelizers for parallel architectures 

is a mature field but one with little progress. Limitations of 

using automatic compilers are known and have been well 

documented [6]. Intent-based compilation, a novel approach, 

was presented in this paper that addresses these limitations. 

Further, the paper, using three very different case studies, 

described the various challenges faced when adopting the 

approach. A work-in-progress tool developed for intent-

based compilation was presented. 

 

A lot of ground work still remains to be done before the 

methodology can be applied to any sequentially coded 

application and for any domain. As a first step in this 

direction, the creation of a comprehensive pattern tree of 

algorithmic and architectural variants for the thirteen dwarfs 

[4] recurring in HPC applications is needed. 
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