
Intent-based Compilation for Heterogeneous Parallel
Architectures

Waseem Ahmed

King Khalid University
Abha, Saudi Arabia

waseem@computer.org

Yajnesh Talapady
P. A. College of Engineering

Mangalore 574153, India
yajnesh_t@yahoo.com

ABSTRACT

Although a lot of research has been done in the field of

automatic parallelization, the extent of parallelization that

can be identified and extracted is still minimal compared to

what can be potentially achieved. Thus, the gains in terms of

performance improvement are minimum.

Intent-based compilation, an approach presented in this

paper to address this shortcoming, is based on identifying

the intent of the programmer from the given serial code and

generating the best possible implementation for a given

architecture. Based on a collection of algorithmic variants

the most parallelizable variant for the given architecture is

then substituted for the pertinent slices in the identified code

to achieve a higher performance gain than can be achieved

by using just automatic parallelization. Three very

contrasting studies have been used to illustrate the

challenges involved in the process. A work-in-progress tool

and results obtained are also described. Initial findings gave

speedups close to manual parallelization.

KEYWORDS

Software Development Tools and Support, Libraries and

Programming Environments, Operating Systems and

Compilers

1. INTRODUCTION

With the rapid proliferation of multi-cores and

multiprocessors in embedded systems (MPSoCs), PCs,

GPUs, game consoles and in the HPC domain, the need for

sophisticated software development tools that support these

parallel architectures becomes extremely important [21]. As

the existing programmer community, in general, has been

educated in sequential programming paradigms a

revolutionary shift to parallel paradigms and parallel

thinking would be needed to cater to the new need of parallel

applications for these platforms.

Shamsheer Ahmed
Manipal Center for Information Science

Manipal 576104, India
meetshamsheer11@gmail.com

Jickson Periya
P. A. College of Engineering

Mangalore 574153, India
jicksonstephen@gmail.com

Although this would theoretically be the ideal case, it would

require time as many topics in the undergraduate curricula

may need to be changed [14] for parallel thinking to become

mainstream. The other, albeit temporary, solution that

researchers agree on is to allow the programmers to continue

to code sequentially as currently been done but support them

with sophisticated tools to help parallelize the sequentially

written code [12]. Indeed, over the past few decades or more

there has been a large volume of work done on automatic

parallelization. Although mature, the progress in this field is

only minimal [6]. The amount of speedup obtained using

existing commercially available parallelization tools as

compared to what can be potentially obtained with manual

parallelization reflects this.

There are two main reasons that may be attributed to this.

The first is that the sequential code is assumed to be coded

for the purpose of parallelization. To clarify, an algorithm

used in the code that cannot be parallelized or cannot be

easily parallelized is not replaced with another more

parallelizable algorithm that solves the same problem.

Rather, the bottleneck is retained. This is the case with

almost all existing parallelization approaches including [17,

13, 10, 6], to name a few. Additionally, if the code is

subjected to restructuring (different from just refactoring [9])

before parallelization, it may reduce coupling between

functions and components [3] and may aid in exposing more

parallelization.

The second reason is that majority of the automatic

parallelizers and compilers convert the sequential program

into a binary executable format. This leaves very little for

the parallel developer to work on in case additional

parallelization could be manually extracted.

Intent-based compilation is a methodology presented in this

paper that addresses the above shortcomings. The next

section briefly describes the methodology. The third section

illustrates the challenges faced when using intent-based

compilation with the help of three case studies. The work-in-

progress tool is described in the following section. The last

section gives the conclusion and briefly highlights the future

work.

2. INTENT-BASED COMPILER

2.1 Introduction

To parallelize high-performance systems, both conventional

data-flow optimizations and high-level transformations are

necessary to improve parallelism and memory hierarchy

performance. Currently, there are two main choices for a

developer to choose from – automatic parallelization and

manual parallelization. As mentioned earlier, automatic

parallelization has thus far not been successful at extracting

scalable parallelism from general programs [6]. The other

option, manual parallelization, involves time consuming

hand optimizations performed for a specific number of cores

and for a specific platform. Intent-based compilation (IBC)

is a meet-in-the-middle strategy. It is not a radically new

compiler methodology but rather involves the introduction

of two additional, but essential steps, to the automatic

compilation technique. The main premise of intent-based

parallelization is that a given code or algorithm is not

assumed to be ’the perfect fit’ for the given architecture. To

illustrate, consider the following case. Conventional

approaches attempt to parallelize a given algorithm by

extracting explicit parallelism, efficiently utilizing the

memory hierarchy and various other techniques. However, if

the given algorithm is embarrassingly serial, even the best of

the available parallelizing compilers would fail to achieve

any speedup. An intent-based compiler instead seeks to

understand the intent of the given algorithm - what is the

program attempting to do or what is it trying to solve? Once

the intent is identified and with a given library of algorithms

that can achieve the same goal, a more parallelizable

alternative is substituted for the existing one. The next sub-

sections explain the methodology in more detail.

2.2 Methodology

The intent-based compilation process comprises the

following main steps

1. Identification of programmer intent in code.

2. Program restructuring.

3. Processing compiler directives (if any).

4. Identification of explicit parallelism.

The third and fourth steps are invariably used in existing

automatic parallelization techniques and not unique to intent

based compilation and, thus, will not be described in this

paper. Intent-based compilation, in addition, introduces the

first two steps to the compilation process. Again, these steps

are not totally unique and may be implicitly performed

manually during hand-parallelization of code. Intent-based

compilation explicitly include these steps in the compilation

process and attempts to automate them. The first step, i.e.

identification of programmer intent in code, comprises three

sub-steps. The first is the identification of programmer intent

in the sequential code. Identification of programmer’s intent

is an exercise in pattern matching based on a collection of

sequential design patterns, or dwarfs as used in [4], and its

variants that commonly occur in HPC applications.

Correctly identifying intent in code by matching it against a

library of algorithmic variants is a very challenging and an

important step. Once a match is identified, the next sub-step

involves the selection of the most optimal algorithm from a

set of architectural variants depending on the available

hardware architecture. The last sub-step involves the

substitution of the algorithm or portion of code for the

existing portion. This involves the identification of the

pertinent slices [16] in code related to that algorithm that

need to be replaced and or modified. This is further

explained in section 3.1 using a case study.

The second step is the program restructuring done and is

performed considering the entire code. This is an involved

step which includes different operations ranging from basic

operations like the removal of dependencies and refactoring

to more complex ones like re-arrangement of code for

effective cache utilization. As completely automating this

step is challenging, human decision making and intervention

may be required in this step. Two options exist at the end of

this step - either the modified code can be parallelized using

existing automatic compilers or a code-to-code

transformation applied to convert it into one using OpenMP,

Message Passing Interface or a mix of both libraries for

possible further manual parallelization. The challenges and

variations faced during this step are highlighted in sections

3.2 and 3.3 using two separate case studies.

2.3 Pattern Matching

To store, match, capture and understand the intent of the

developer or algorithms present in code, a collection of

patterns in the form of regular expressions is defined. This

pattern tree is categorized into a hierarchy with each branch

from the root denoting a separate dwarf ([4]) or design

pattern commonly used in the HPC domain. Branches from

the root may have different depths and breadths depending

on their algorithmic and architectural variants. For example,

the dense matrix-matrix or matrix vector multiplication has

very few algorithmic variants and will have a smaller depth

and breadth while the branch denoting the TSP problem will

comprise a large sub-tree with a relatively larger height and

breadth as the algorithmic variants in this case are much

higher. This is further explained in the next section. Having

a well defined and comprehensive collection of both

algorithmic and architectural variants for commonly

occurring patterns is essential to the IBC tool (described in

Section 4)

.

3. CASE STUDY

To illustrate the intent-based compilation process, three very

contrasting examples are used as case studies. The first is

code used in the study of a problem in Computational Fluid

Dynamics. The code used for the study represents a category

of applications that have been developed by domain

engineers and scientists with little programming and

software engineering experience. The developed code, from

the software engineering perspective, is ’unfit’ for

immediate automatic parallelization as-is and needs to be

polished and restructured before subjecting it to profiling,

bottleneck identification and the rest of the parallelization

process. The second is dense matrix-matrix multiplication,

an operation that is a basic kernel used in many Grand

Challenge Applications (GCA) [11]. It is one of the simplest

operations in HPC that can be manually parallelized and

different approaches to parallelize it have been presented in

literature. The third example used as a case study is the

traditional Travelling Salesman Problem (TSP). Although

many approaches exist in literature to solve the TSP, it

presents a difficult challenge from the automatic compilation

point of view. The next three sub sections describe these

challenges in more detail.

3.1 Conjugate Heat Transfer
3.1.1 Introduction
A category of researchers working on real world Grand

Challenge Applications have limited programming and

Software Engineering experience and do not have access to

funds that can enable them to hire developers to help them

parallelize their software [2]. The paper takes one such

example to illustrate why restructuring of code is important

in such cases in order to achieve the maximum possible

speedup using an automatic parallelizer.

The code used for this study was developed to understand

the Conjugate Heat Transfer problem associated with a

rectangular nuclear fuel element washed by upward moving

coolant. The code developed over a period of 3 years is

fairly mature and results obtained using the code have been

published in various journals in the CFD field. The code had

about 1800 LOC with 31 functions and was developed in-

house by a single developer with a Mechanical Engineering

background and with limited programming and Software

Engineering experience.

3.1.2 Parallelization Process
Automatically parallelizing this code was not a good option

as the code violated many basic software engineering

principles as described in [2]. A few examples are given

below for illustration

• Excessive and sometimes unnecessary use of global

variables

• Unnecessary separation of loops adding to the size of

code

• Functions (methods) without input parameters or return

value. Global variables were used as substitute for both

purposes

• Multiple functions (methods) with similar functionality

and few differing statements

• Excessive use of file input-output operations.

 As the code had multiple loops spread across multiple

functions the bottlenecks were spread out. Even manual

parallelization of such code, without a deep understanding of

the domain, would prove to be difficult. Also, the potential

to expose maximum parallelism in such an application with

an automatic parallelizer would not be much. Such code

needs to be first restructured before any attempt is made to

parallelize it.

3.1.3 Challenge Factor
Medium to High. As the number of ways an application can

be coded is large, even manually restructuring a program to

obtain optimized code can become difficult. Automating this

for a moderately sized code will indeed be challenging.

3.2 Matrix multiplication
3.2.1 Introduction
Dense matrix-matrix multiplication is an important operation

in the field of scientific computation and has been a topic of

great interest to computer scientists for over forty years.

There has been a lot of work presented in literature to reduce

the time complexity of O(n
3
) of the traditional brute force

matrix-matrix multiplication. Strassen’s [20] work initially

brought down the complexity to O(n
2.807

). This was

followed by Coppersmith and Winograd’s algorithm [8]

which brought it further down to from O(n
2.376

). For large

matrices, however, this still takes an extremely large time

when run on single-core processor desktop PCs. Moreover,

these algorithms are not trivial to implement and remain

obscure among the mainstream programmers who have been

educated with the traditional and simple three nested-loop

approach. Besides these, there are very few other popular

variants for implementing matrix multiplication sequentially.

3.2.2 Parallelization Process
Consider the automatic parallelization of a typical,

sequentially coded simple dense n x n matrix-matrix

multiplication algorithm. This algorithm requires n
3

multiplication and n
3
 addition, leading to a sequential time

complexity of O(n
3
). The independence between iterations

of the two outer loops makes parallelization simple.

Theoretically, with p ≥ n
2
 processors, a parallel time

complexity of O(n
2
) is easily achievable. For this simple

case and given a large number of processors, the theoretical

lower bound of Ω(n
2
) can be achieved by any average

automatic compiler.

 However, when p < n
2
, an automatic compiler may not be

able to achieve the maximum potential speedup. Consider

for example, a distributed network of workstations. Given a

sequential code, automatically dividing the matrices into

appropriately sized blocks or stripes based on the matrix

size, the cluster size, cluster topology and processor types

available within the cluster while optimally utilizing the

multi-level cache hierarchy and optimally balancing the

loads between processors and cores is certainly non-trivial.

Moreover, for a GPU (NVIDIA) implementation, automatic

parallelization of the sequential code would be far from

ideal. This is because code optimized for a GPU involves a

manual translation that would involve replacing simple C

statements present in sequential code with CUDA specific

code including the creation of new kernels, including

statements for data transfers between host and device

memory hierarchies of the GPU or introducing explicit calls

to functions present in the CUBLAS libraries [19] for matrix

multiplication. Although there are approaches that translate

OpenMP code to a CUDA implementation [5], there is

limited literature that explains how this can be achieved

using sequentially written code.

Intent-based compilation, on the other hand, identifies the

intent of the programmer - matrix multiplication in this case

and appropriately replaces the pertinent slides [16] with the

most appropriate implementation for that particular

architecture using appropriate OpenMP, MPI and CUDA

calls.

3.2.3 Challenge Factor
Easy to medium. As the algorithmic variants for dense

matrix-matrix multiplication are small and the problem has

been well studied, parallelizing sequential code in this case

is not very difficult. However, optimizing code to achieve

maximum performance for a given architecture can pose

certain difficulties considering the different choices

available. For example, the documentation available for

programming the NVIDIA GPU using CUDA lists about

eleven variations, including calls to the CUBLAS library.

3.3 Travelling Salesman Problem
3.3.1 Introduction
This case study, in general, represents the optimization class

of problems used in many domains. One such well studied

optimization problem is the Travelling Salesman Problem

(TSP). The last century has seen various approaches

presented towards solving the TSP. These range from exact

algorithms (brute force) for solving the problem for around

30 cities (nodes), to branch-and-bound approaches [15] for

over 60 cities to genetic algorithms [18], progressive

improvement and branch-and-cut for a much higher number

of cities. The Concorde TSP Solver [7], for example,

recently solved an instance with 85,900 points taking over

136 CPU years. Other approaches to solve the TSP are as

Nearest Neighbor, Insertion algorithms, Match Twice and

Stitch (MTS), Convex Hull, Lin-Kernighan, k-opt heuristic,

Ant colony optimization, Tabu Search and Simulated

Annealing, to name a few.

The important point to note is that all these algorithmic

variants seek to solve the same optimization problem – that

of having a salesman visit all the given cities once and return

to the starting point covering the least possible distance. For

a given architecture, the number of cities and the application

domain, one approach might be more suitable than the other

.

3.3.2 Parallelization Process
When compiling code for the TSP (and other similar

problems), there exist two very interesting alternatives from

the intent-based compilation point of view. Having

identified the intent in sequential code, should the compiler

replace the algorithm with its algorithmic-variant or replace

the algorithm with its architectural-equivalent? To clarify, if

the compiler identifies the intent as the TSP problem being

solved using the Genetic Algorithm approach should it

replace the affected code with the Concorde equivalent

(algorithmic-variant), for example, or replace it with code

also using a Genetic Algorithm approach but optimized and

parallelized specifically for a 64-processor shared memory

supercomputer (architectural-variant)? Problems that fall in

this class of application and other similar ones are

hierarchical problems consisting of solution alternatives at

two levels or more. Additionally, these sub-problems also

have algorithmic variants. For example, there are various

ways of solving the TSP problem using genetic algorithm-

based approaches – using different crossover and mutation

operators, fitness functions, population size, etc. Moreover,

for parallelizing any genetic algorithm-based approach

unique decisions need to be taken before parallelization. For

example, the following questions need to be precisely

answered during algorithm formation as even slight

variations can result in large deviations between results.

1. Should each processor operate independently on

isolated sub-populations or should each processor execute a

portion of the algorithm?

2. If the former, should inter-processor crossover or

migration be used? If yes, which model [22]?

3. Which crossover operation [18] should be used?

4. How to decide on the mutation rates, termination

conditions, and other genetic algorithm specific intricacies?

Similar variations exist when solving using the Ant Colony

Optimization and other methods.

3.3.3 Challenge Factor
High to Extremely High. As large algorithmic variants exist

for this category of problems, deciding on which one to

substitute from among the large available set of algorithmic

variants is challenging. The first step when applying the

intent-based compilation approach to this and other similar

hierarchical problems would be to invite human intervention

to some extent. Additionally, a comprehensive collection of

algorithmic variants and architectural variants for each

algorithm would need to be created and maintained. The

Pattern Tree creation and maintenance is an intense exercise

and its description is beyond the scope of this paper.

4. DESCRIPTION OF TOOL

The tool used for intent-based compilation has been

developed on the Linux platform and is based on Perl, the

GNU toolkit and MPICH libraries. The compilation, as

described earlier and as shown in Figure 1 is a two-step

process. In the first-step, the tool parses a correct sequential

C program, identifies the developer intent in code, maps the

intent to the appropriate algorithmic variant present in the

Pattern Tree, identifies the pertinent slices in code that need

to be modified and, based on this knowledge, translates the

sequential code into code consisting of OpenMP directives

and MPI calls. In the second-step, the intermediate code is

compiled into an executable for a particular hardware

architecture as specified in the user-supplied hardware

architecture configuration file. This additional step of

intermediate code generation provides additional flexibility

for further manual hand optimizations, if needed. This work-

in-progress tool, currently, is limited to the translation of

sequential code containing the dense matrix-matrix

multiplication kernel and has been tested for different values

of m x n. The parallelized code was executed on a Linux

cluster of dual-core PCs. Processor/core utilization achieved

was similar to that obtained with hand-optimized code.

Initial findings and results obtained using the tool have been

published earlier in [1]. The following sections describe the

methodology followed in finding the hot spot of the program

particular to the IBC tool shown in figure 1.

Figure 1: Tool for Intent-Based Compilation

5. CONCLUSION
Research on automatic parallelizers for parallel architectures

is a mature field but one with little progress. Limitations of

using automatic compilers are known and have been well

documented [6]. Intent-based compilation, a novel approach,

was presented in this paper that addresses these limitations.

Further, the paper, using three very different case studies,

described the various challenges faced when adopting the

approach. A work-in-progress tool developed for intent-

based compilation was presented.

A lot of ground work still remains to be done before the

methodology can be applied to any sequentially coded

application and for any domain. As a first step in this

direction, the creation of a comprehensive pattern tree of

algorithmic and architectural variants for the thirteen dwarfs

[4] recurring in HPC applications is needed.

REFERENCES
[1] S. Ahmed and W. Ahmed. Code-to-code translator for

heterogenous parallel computing environments. In

Proceedings of the International Conference on On-

Demand Computing (ICODC’10), Bangalore, India,

November 2010.

[2] S. Ahmed, S. Bhat, M. Isham, W. Ahmed, and M. K.

Ramis. Pre-parallelization exercises in budget -

constrained hpc projects: A case study in cfd.

International Journal of Computer Applications,

1(26), February 2010.

[3] W. Ahmed and D. Myers. Design refinement for

efficient cluste ing of objects in embedded systems. In

Design, Automation and Test in Europe Conference

and Exhibition, volume 2, pages 718–719, Los

Alamitos, CA, USA, 2005. IEEE Computer Society.

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. L.

Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.

The landscape of parallel computing research: A view

from berkeley. Technical Report No.

UCB/EECS-2006-183, University of California at

Berkeley, 2006.

[5] H. Bae, L. Bachega, C. Dave, S.-I. Lee, S. Lee, S.-J.

Min, R. Eigenmann, and S. Midkiff. Cetus: A

source-to-source compiler infrastructure for

multicores. In Proceedings of the 14th Int’l Workshop

on Compilers for Parallel Computing, 2009.

[6] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin,

and D. I. August. Revisiting the sequential

programming model for the multicore era. IEEE

Micro, pages 12–20, Jan-Feb 2008.

[7] Concorde. Concorde tsp solver.

http://www.tsp.gatech.edu/concorde.html.

[8] S. Coppersmith, Don; Winograd. Matrix

multiplication via arithmetic progressions. Journal of

Symbolic Computation, 9:251–280, 1990.

[9] M. Fowler. Refactoring: improving the design of

existing code. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1999.

[10] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.

Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam.

Maximizing multiprocessor performance with the suif

compiler. Computer, 29:84–89, December 1996.

[11] K. Hwang. Advanced Computer Architecture

(Parallelism, Scalability, Programability). Tata Mc

Grawhill, 1993.

[12] W.-m. Hwu, S. Ryoo, S.-Z. Ueng, J. H. Kelm,

I. Gelado, S. S. Stone, R. E. Kidd, S. S. Baghsorkhi,

A. A. Mahesri, S. C. Tsao, N. Navarro, S. S. Lumetta,

M. I. Frank, and S. J. Patel. Implicitly parallel

programming models for thousand-core

microprocessors. In DAC ’07: Proceedings of the 44th

annual conference on Design automation, pages

754–759, 2007.

[13] S. Kwon, Y. Kim, W.-C. Jeun, S. Ha, and Y. Paek. A

retargetable parallel-programming framework for

mpsoc. ACM Trans. Des. Autom. Electron. Syst.,

13:39:1–39:18, July 2008.

[14] E. A. Lee. The problem with threads. IEEE

Computer, May 2006.

[15] A. Levitin. Introduction to The Design and Analysis of

Algorithms. Pearson Education, 2nd edition, 2007.

[16] S.-W. Liao. SUIF Explorer: An Interactive and

Interprocedural Parallelizer. PhD thesis, Stanford

University, 2000.

[17] S.-W. Liao, A. Diwan, R. P. Bosch, Jr., A. Ghuloum,

and M. S. Lam. Suif explorer: an interactive and

interprocedural parallelizer. In Proceedings of the

seventh ACM SIGPLAN symposium on Principles and

practice of parallel programming, PPoPP ’99, pages

37–48, New York, NY, USA, 1999. ACM.

[18] Z. Michalewicz. Genetic algorithms + data structures

= evolution programs (3rd ed.). Springer-Verlag,

London, UK, 1996.

[19] NVIDIA. CUDA CUBLAS Library, June 2007.

[20] V. Strassen. Gaussian elimination is not optimal.

Numerische Mathematik, 13:354–356, 1969.

[21] J. Turley. Survey says: Software tools more important

 than chips. www.embedded.com, November 2005.

[22] B. Wilkinson and M. Allen. Parallel Programming:

 Techniques and Applications Using Networked

 Workstations and Parallel Computers. Pearson

 Education, 2004.

