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Abstract—Several efforts have been made towards the devel-
opment of architectures, mechanisms, and policies that enable
resource allocation across several Grids. Recently, such feder-
ated Grids have applied lease-based and Virtual Machine-based
approaches in allocating resources. Lease-based approach along
with VMs impose new challenges to the resource management
systems in federated Grids. In this research we deal with some
of these challenges in the context of InterGrid as a virtualized
federated Grid environment. The first challenge we deal with
is selecting the best set of leases for preempting in favor of
users with higher priority. The second problem we consider in
federated Grid is how a meta-scheduler should schedule the
incoming requests amongst available sites (clusters) in a way
that minimum contention take place.

I. INTRODUCTION

Federated Grids enable sharing, selection, and aggrega-
tion of resources across several Grids, which are connected
through high bandwidth network connections. Resource pro-
visioning for user applications is one of the main challenges
and research areas in federated Grid environments. Job
abstraction is widely used in resource management of Grid
environments. However, due to advantages of Virtual Ma-
chine (VM) technology, recently, many resource management
systems have emerged to enable another style of resource
management based on the lease abstraction [6].

InterGrid, as a federated Grid environment, also aims
to provide a software system that interconnects islands of
virtualized Grids. It provides resources in the form of VMs
and allows users to create execution environments for their
applications on the VMs [5]. In each constituent Grid, the
provisioning rights over several clusters inside the Grid are
delegated to the InterGrid Gateway (IGG). On the other hand,
local users in each cluster send their requests directly to the
local resource manager (LRM) of the cluster.

Hence, resource provisioning is done for two different
types of users, namely: local users and external users. As
illustrated in Figure 1, local users (hereafter termed as local
requests), refer to users who ask their local cluster resource
manager (LRM) for resources. External users (hereafter
termed as external requests) are those users who send their
requests to a gateway (IGG) to get access to larger amount
of shared resources. Typically, local requests have priority
over external requests in each cluster [4]. In other words, the
organization that owns the resources would like to ensure
that its community has priority access to the resources.

Under such a circumstance, external requests are welcome
to use resources if they are available. Nonetheless, external
requests should not delay the execution of local requests.
The first problem we deal with in this environment is how to
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Fig. 1. A scenario that shows the contention between local and external
requests in a resource sharing environment

remove the contention between local and external requests
in InterGrid. Given the fact that local requests have more
priority rather than local requests we preempt external leases
in favor of local requests. More specifically, we propose
policies to determine an appropriate set of leases for pre-
emption. Additionally, we make an appropriate decision for
the preempted lease based on the VMs capabilities.

The second problem that we address in this research
is how the contention between local and external requests
that take place in a virtualized Grid environment can be
decreased. More specifically, we look at this problem from
a meta-scheduling point of view, where the meta-scheduler
distributes incoming requests (from other Grids in the case
of InterGrid) between several clusters within that Grid.

The rest of this paper is organized as follows: In Section II,
an overview of the InterGrid environment is provided. Sec-
tion III introduces preemption policy. Next, in Section IV
meta-scheduling solution for reducing contention is provided.
Finally, conclusion and future works are provided in Sec-
tion V.

II. BACKGROUND AND CONTEXT

InterGrid aims to provide a framework that allows users
to create execution environments for various applications
on top of the physical infrastructure participating in Grid
systems. Peering arrangements established between gateways



(termed IGG in the InterGrid context) enable the allocation
of resources from different Grids to fulfill the requirements
of the execution environments.

The Local Resource Manager (LRM)' is the resource
manager in each cluster and provisions resources for the local
and external requests. Virtual Machine (VM) technology is
used in each cluster of InterGrid for resource provisioning.

In the InterGrid each request is contiguous and must be
served within resources of a single cluster. Each request
has a type, number of VMs, duration, and the deadline
(optional). We consider several types of Grid requests in
InterGrid. These Grid requests can broadly be classified as
Best-Effort (BE) and Deadline-Constraint (DC) requests. BE
Grid requests can be preempted in favor of local requests. If
there is not enough resources to start BE requests, they are
scheduled in the first available time-slot. DC Grid requests
cannot be preempted if the deadline is tight. Additionally,
DC requests are rejected if there is not enough resources for
them to start.

BE Grid requests can be either Cancelable: which can
be started at any time and is terminated in the case of
preemption; or Suspendable: which can be started at any
time and is rescheduled in later time-slot in the case of
preemption. DC Grid requests can be Migratable: which are
sent to another cluster inside the same Grid in the case of
preemption; or Non-preemptive: which cannot be preempted
at all. We also consider local requests of a cluster as Non-
preemptive requests. To see more details about different Grid
request types readers can refer to [2], [5].

III. PREEMPTION POLICY

When a local request cannot be allocated because re-
sources are occupied by external requests, preemption occurs
to free space for local requests. Specifically, allocation of
parallel requests can potentially result in different leases to
be preempted. Each candidate set contains a set of leases
that their preemption makes enough space for an incoming
local request. From the system centric perspective, choosing
different candidate sets affects the number of VMs to be
preempted, which turns out to present different time over-
heads and different resource utilization. From user centric
perspective, selecting different candidate sets leads to a
different number of leases to be preempted, which adds
more waiting time and, consequently, more external user
dissatisfaction.

We propose an approach (MOML) that can fulfill both
system and user centric criteria at the same time. This policy
is shown in Algorithm 1.

According to Algorithm 1, in MOML the selection of a
candidate set is carried out in two phases. In the first phase
(pre-selection) all candidate sets which have a total overhead
less than a certain threshold («) are pre-selected for the
second phase (lines 5 to 8 in Algorithm 1). In the second

IThis component is also called Virtual Infrastructure Engine (VIE) in the
InterGrid.

phase, to have fewer leases affected, a candidate set that
contains minimum number of leases is selected(lines 9 to
11 in Algorithm 1). To keep the trade-off between overhead
and waiting time, we consider « as the median value of the
overheads (lines 1, 2, and 4 in Algorithm 1). By choosing
a = median we ensure that just half of the candidate sets
that have lower overheads are considered in the second phase
for having a minimum number of leases. In the experiments

Algorithm 1: MOML Preemption Policy.
Input: Candidate Sets
Output: Selected Candidate Set
1 foreach candidateSet € Candidate Sets do
2 L Overheads.Add (getOverhead (candidateSet) ) ;

3 min < o0;
4 o < getMedian (Overheads)
5 foreach candidateSet € Candidate Sets do
ovhd < getOverhead (candidateSet) ;
NoLeases <+ Cardinality (candidateSet) ;
if ovhd < o then
if NoLeases < min then
10 selected + candidateSet;
11 L min < NoLeases;

R I B

we compare the resource utilization and number of lease
preemption resulted from different policies. We compare
MOML against 2 other policies. MOV: which minimizes
preemption overhead time and MLIP: which minimizes the
number of leases preempted.

Figure 2, shows the impact of altering workload parameters
on resource utilization. This experiment indicates that re-
source utilization increases almost linearly by increasing the
average number of VMs in requests (Figure 2(a)). Although
preempting best effort leases make some overhead, we can
see in Figure 2(b) that increasing the number of best effort
requests improves resource utilization.

By increasing the number of local requests the number
of preemption and subsequently the amount of overhead
increases. Therefore, as we can see in Figure 2(c), by
increasing the number of local requests, resource utilization
decreases almost linearly in all policies.

Figure 3(a) shows that, in general, leases with more
number of VMs lead to fewer of preemptions. In fact, in
this situation fewer of leases are needed to be preempted to
make room for incoming local requests.

Figure 3(b) shows that by increasing the number of best
effort external requests the number of preemptions increases
almost linearly. For a lower percentage of best effort exter-
nal requests (percentage best effort<30%), MOML behaves
similar to MOV, however, after that point MOML approaches
to MLIP.

Figure 3(c) demonstrates that the number of preemptions
increases by increasing the number of local requests in all
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policies almost linearly. As illustrated in all sub-figures of
Figure 3, most of the time MLIP results in a minimum
number of preemptions and MOML operates between MLIP
and MOV.

IV. CONTENTION-AWARE META-SCHEDULING

In this section we propose scheduling policy in the meta-
scheduler of InterGrid (IGG) that determines the fraction of
external requests that should be allocated to each cluster
in a way that minimizes the contention (number of VM
preemptions). The proposed policy is based on the stochastic
analysis of routing in parallel, non-observable queues. To
see details of the analysis interested readers can refer to [1].
However, due to space shortage, here, we just describe the 2
policies that we proposed namely: workload allocation policy
and dispatch policy. Workload allocation policy determines
the proportion of external requests that have to be sent to each
cluster in a Grid. Dispatch policy determines the sequence
of submitting different types of external requests to different
clusters in a way that external requests with tighter QoS affect
less by preemption.

The preemption-aware workload allocation policy (PAP)
is presented in the form of pseudo-code in Algorithm 2.
According to Algorithm 2, at first ¢ is calculated for all
clusters. Then, in steps 4 to 10, to exclude the heavily loaded
clusters, clusters are sorted based on the 1 value in the
ascending order. Next, the value of k is increased up until
condition defined in step 7 is met. ub is found by starting
from 2: /b and is doubled up until condition in step 13 is met.
Steps 16-21 show a bisection algorithm for finding proper
value for z. Finally, in steps 22 and 23 the arrival rate to

each cluster is determined. Steps 24 and 25 guarantee that
clusters k+1 to N, which are heavily loaded, do not receive
any external request.

The algorithm proposed above determines the routing
probability to each cluster. However, it does not offer any
deterministic sequence for dispatching each external request
to the clusters. More importantly, as mentioned earlier, exter-
nal requests are in different levels of QoS which implies that
some external requests are more valuable. Hence, we would
like to decrease the chance of preemption for more valuable
requests to the minimum possible. We put this precedence in
place through a dispatch policy.

In this part, we propose a policy that, firstly, reduces
the number of VM preemptions for more valuable exter-
nal requests; Secondly, this policy makes a deterministic
sequence for dispatching external requests. It is worth noting
that the dispatch policy uses the same routing probabilities
that worked out for each cluster using workload allocation
policy. The only difference is in the sequence of requests
dispatched to each cluster. For this purpose, we adapt Billiard
strategy [3] as the dispatching policy.

Minimizing the likelihood of preempting valuable requests
depends on the scheduling policy in the gateway (IGG)
(which is investigated in this paper) as well as the local
scheduling policy in each cluster. The local scheduling policy
we use in the clusters has the awareness of the request types
and at the time of preemption preempts leases that belong
to less valuable users [2]. Given this policy for the local
schedulers of each cluster, more valuable leases would be
preempted if and only if there is not (sufficient) leases of less
valuable request types to be preempted. We can infer that the



Algorithm 2: Preemption-aware workload allocation Pol-
icy (PAP).

Input: A;,0;,w;,\;,7j,u, forall 1 < j < N.
Output: (Aj) load distribution of external requests to
different clusters, for all 1 < j < N.
1 for j < 1to N do

L Aiky 05 .
| ¥ = sy + aay
//Sort array % in ascending order;

Sort (Y);
k+1;
while £k < N do

7| AN 6(vn) > (Z?_l ud’”) — A then
8 | break;

9 else
10 L k< k+1;

N

A B W

11 b <+ Yy;
12 ub =2 x%[b;

13 while 3% 6, (ub) > <z§_1 %“) — A do
4| ub=2xub;

15 //€ is the expected precision;
16 while ub — b > € do
17 z <« (Ib+ ub)/2;

18 if 2521 ¢;(2) > (Z§_1 u;f”) — A then

19 | Ib <z
20 else
21 L ub — z;

22 for j < 1 to k do

AL (Q=p) 1 [(A=p)(wiA=p;)+0;X;p;,
2 Aj = 6; _9j\/ 29_7‘3(1—;’_7‘)24-%&)_7‘—29?1) ’

24 for j <~ k+1to N do
25 LA]»:O;

chance of getting preempted for valuable external requests
would be low if a mixture of valuable and less valuable
external requests are dispatched to each cluster. Therefore,
in the dispatch policy we keep track of number of external
requests of each type that are dispatched to each cluster.
The pseudo-code developed for this purpose is presented
in Algorithm 3. In Algorithm 3, at first the fastest cluster is
found based on the average service time for external requests
in each cluster (step 1). We consider Pf as the probability
of dispatching request type ¢ to cluster j. P} is worked out
based on P; and the proportion of request type ¢ in external
requests (steps 4, 5). In step 7, we assign 1 to the fastest
cluster. Yj expresses the number of external requests of type
1 that are dispatched to cluster j and initially is zero (step 6).
By receiving an external request, value of the adapted billiard
sequence for all clusters are worked out and a cluster with

Algorithm 3: Request Type Dispatch Policy (RTDP).
Input: P;,0; forall 1 <j < N.
Output: SelectedCluster(js)

1 fastestCluster <+ findFastestCluster(f);

2 foreach Cluster j do

3 X <+ 0;

4 foreach RequestType i do

5 L P; + Pj x GetProportion(i);

6 sz +— 0;

7 XfastestC’luster — 1;
8 foreach external request received do
9 i < GetRequestType();

10 min < MaxValue;

11 foreach Cluster j do

12 if (P} # 0) then

13 D= (X; +Y})/P};

14 if (D < min) then

15 min < D;

16 L tmpCluster + j;

17 }/tlmpCluster — Y;zmpCluster +1

18 js < tmpCluster;

minimum value is chosen (steps 9-16). Finally, Y is updated
for the selected cluster (step 17).

We examine the efficacy of the proposed policies against
following policies. RR: where external requests are dis-
tributed based on RR policy. BCF: biggest cluster first.
LRF: least rate first. RND also indicates Bernouli (random)
dispatch policy.

As we can see in all sub-figures of Figure 4, the number of
VMs preempted increases by changing different factors. In
all of them PAP-RTDP (combination of proposed workload
allocation policy and dispatch policy) significantly outper-
forms other policies.

In Figure 4(a), we witness a sharp decrease in PAP-RTDP
when the average run time is more than 300 seconds. In fact,
in the case of PAP-RTDP, better sequencing of the external
requests has resulted in better balance in allocating requests
which in turn results in fewer VM preemptions. Figures 4(b)
and 4(c) reveal the efficacy of PAP-RND and PAP-RTDP,
particularly where the arrival rate of external requests or the
arrival rate of local requests are increased. We can conclude
that workload allocation policy (PAP) has more impact where
inter-arrival rate of local requests is high whereas dispatch
policy has more influence where external requests’ arrival
rate is high.

In the last experiment we measure how valuable (Migrat-
able and Non-preemptive) users are respected. For Migratable
requests we measure the number of times that VM migra-
tion happens (migration rate). For Non-preemptive external
requests we consider the rejection rate. The results of the
experiments are illustrated in Figure 5. In all sub-figures of
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Fig. 5. Respecting more valuable users by modifying (a),(b) the average duration, (c),(d) arrival rate of external requests, (e),(f) arrival rate of local requests.

Figure 5, we can notice that PAP-RTDP dispatching policy
has substantially reduced the percentage of migrations and
also rejections. Particularly, in figure 5(f), although PAP-
RTDP is not substantially better than PAP-RND, we observe
a marginal improvement in the rejection rate mainly for rates
more than 0.12.

In Figures 5(c) and 5(d) as the inter-arrival rate of external
requests increases, we observe a decrease in the migration
and rejection rates. In fact, by having more external requests
the probability of having diverse leases at each time is more.
This issue reduces the probability of migration and rejection.

V. CONCLUSIONS AND FUTURE WORK

In this research we considered a virtualized federated
Grid environment where local requests and external requests
coexist in each cluster and local requests have preemptive
priority over the external requests. In this environment,
we first explored the appropriate set of leases that can be
preempted in a way that both system criteria and user criteria
were satisfied. The second part of the research introduces a
contention-aware meta-scheduling policy in this environment
that reduces the contention between local users and external
users. Although we carried out this research in the context of
InterGrid, we believe that it is extensively applicable in other
Grid/Cloud resource providers where requests with higher
priority (such as local or more valuable requests) coexist with

other requests. In future, we plan to investigate admission
control policies in this environments. Another future direction
of this research is considering negotiable QoS requirements
for requests.
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