
Indexing Structures for �ash based Solid State Drives

SeungBum Jo1,3, Vineet Pandey2,3, and S. Srinivasa Rao1

1 School of Computer Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea

sbcho@theory.snu.ac.kr, ssrao@cse.snu.ac.kr
2 Computer Science & Information Systems, BITS Pilani, 333031, India

vineetp13@gmail.com
3 Student authors

Abstract. Performance computing is fast becoming the mainstay of computer science. Despite massive

increase in the processing power, performance bottlenecks exist due to much lesser throughput on the

storage side. It is a matter of time before conventional magnetic disks make way for a faster technology.

Flash memory devices are becoming ubiquitous and indispensable storage devices, partly replacing the

traditional hard-disks. To store data e�ciently on these devices, it is necessary to adapt the existing

�le systems and indexing structures to work well on �ash memory, and a signi�cant amount of research

in this �eld has been devoted to designing such structures. But it is hard to do a provable comparison

between these structures owing to the lack of any analytical memory models for �ash memory since

the existing external memory models fail to capture the full potential of �ash-based storage devices.

In this paper we study various index structures that have been shown to perform well on SSDs, and

analyze them in the recently proposed �ash memory models. This is the �rst such work to com-

pare the provable performance of various �ash based data structures on a common �ash memory model.

Key words: Storage systems, Storage perfor-
mance, Solid State Drive, �ash memory, tree in-
dexes, �ash memory model.

1 Introduction

Flash memory is non-volatile computer mem-
ory which can be erased and programmed. Flash
memory devices have received increasing atten-
tion amongst the storage community because
they are lighter, provide greater throughput and
greater shock resistance while consuming lesser
power as compared to magnetic disks. Flash
memory has been put to use in low power de-
vices and it is believed that they will be used
for commercial large-scale usage either alongside
or by replacing traditional disk-based storage.
Compared to magnetic disks, �ash memory ex-
hibits some unique characteristics such as asym-
metric read and write speeds (read-write bias),
erase before write, out-of-place update and weari-
ness. Flash disks come as raw NAND memory
or as commercial Solid State Disks (SSDs). The
SSDs come prepackaged with a Flash Translation

Layer (FTL) which distributes erases uniformly
across the disk to prevent early failure. We con-
sider the problem of storing indexing data struc-
tures on a �ash based device where the index
contains pointers to the data records which are
stored on a di�erent secondary disk. With the
rapid growth of �ash memory capacity, the im-
plementation of index structures originally de-
signed for disk-based external memory can be-
come a bottleneck. Despite signi�cant work in
the �eld of �ash-speci�c data structures, there is
a lack of a central model to theoretically analyze
the performance of the several proposed struc-
tures. By means of this study, we intend to de-
velop a framework to compare various secondary
indexing structures for �ash memory.

2 Flash Memory Models and B+-tree

In the past few years, there have been e�orts to
characterize the �ash devices to develop e�cient
algorithms for them which may ultimately
in�uence the exact architecture of future �ash
devices. Ajwani et al. [2] proposed the following

two computational models for analysing the
performance of algorithms on �ash memory.

General �ash model. This is similar to the
I/O model, with the exception that read and
write-block sizes are di�erent and that they
incur di�erent costs. It assumes a two-level
memory hierarchy, with fast internal memory
of size M and a slow external �ash memory
of in�nite size. Read and write I/Os from and
to the �ash memory occur in blocks of sizes
BR and BW respectively. The complexity of an
algorithm is x + c · y, where x and y are the
number of read and write I/Os respectively, and
c is a penalty factor for writing. We assume that
BR ≤ BW < M , and c ≥ 1.

Unit-cost �ash model. The unit-cost �ash
model is the general �ash model augmented
with the assumption of an equal access time
per element for reading and writing. In this
model, the cost of an algorithm performing
x read I/Os and y write I/Os is given by
xBR + yBW , where BR and BW denote the
read and write-block sizes respectively. This
makes it easier to adapt external-memory results.

B+-tree. A B+-tree [4] is a data structure which
is used to manage databases e�ciently. It main-
tains a collection of records in the sorted order of
their keys and allows for �nd, insert and delete
operations to be performed in time proportional
to the height of the tree. Let us consider a B+-
tree where each node is of size B and the total
number of elements in the tree is N . The num-
ber of elements in a node and hence the branch-
ing factor at every node is maintained between
B/2 and B. Therefore, the height of a B+-tree is
O(logB N) which is also the time taken to per-
form �nd, insert or delete operations.

We assume the �ash disks to be of NAND type
in which every available EU is cleared (set to 1)
to begin with, and writing a page means chang-
ing the 1s selectively to 0s. Reads and writes can
happen at a page level but rewriting a page re-

N Number of records in the indexing tree

B Size of a node in the indexing tree

BR Size of a read-block in �ash memory

BW Size of a write-block in �ash memory

BU Size of bu�er

EU Erase Unit

Table 1: List of symbols used in the text

quires erasing the entire EU which has a huge
cost penalty associated with it. A page though
can be invalidated and its contents can be writ-
ten to a new page in the same or a di�erent EU.
All pointers using the physical address of the pre-
vious page (now invalidated) need to be changed
accordingly.
We analyze the worst-case complexity of search

and calculate the amortized cost for update for
various indexing structures based on B+-tree.
Based on the cost of operations, we predict theo-
retically which data structure works well for dif-
ferent conditions. Once we have the values (x and
y in the models), we can obtain the performance
in either the general-cost or the unit-cost model.
We assume that BW ≥ BR.

3 Proposed variants of B+-tree for

�ash memory

Various modi�cations have been proposed to B+-
tree to reduce the number of writes, such as using
a main memory bu�er to apply a group of up-
dates together and varying the size of the node
according to the level in the tree.

3.1 Flash Translation Layer (FTL)

Since in-place update is not allowed by �ash
memory, updating a page requires one to inval-
idate that page and write the contents (along
with modi�cations) to a di�erent page alto-
gether. Flash Translation Layer (FTL) [3] solves
the problem of updating multiple nodes for one
update by using logical addresses instead of phys-
ical addresses for pointers and maintaining a logi-
cal to physical address map. FTL enables a wear-

levelling policy to be used, which distributes

2

erases uniformly across EUs. It can also provide
a sector based access to directly implement exist-
ing magnetic-disk based algorithms on the �ash
disk. Using FTL along with a standard B+-tree
brings down the update cost from O(logBW

N)
write I/Os to O(1) write I/Os while maintaining
the cost of �nd operation as O(logBR

N) read
I/Os,

3.2 Lazy Adaptive tree

The Lazy Adaptive tree proposed by Agrawal et
al. [1] has a �ash-resident bu�er at every kth level
from the root to avoid high update cost of �ash
memory by grouping together update operations
in bu�ers. An optimal online algorithm named
ADAPT dynamically determines whether to
empty the bu�er and update the contents of the
descendant nodes or append the update request
to the bu�er. The ADAPT algorithm estimates
bene�t of emptying bu�er using bu�er size and
bu�er scan cost at each lookup and if this bene�t
is larger than the cost of emptying the bu�er,
then the ADAPT algorithm empties the bu�er
at that lookup. We assume that LA-tree is used
over FTL, the e�ective bu�er size BU is same
at every level and it is emptied only for insertion.

Internal Node Buffer containing key values Leaf node, Grey indicates
pointer to record on disk

Fig. 1: Lazy-Adaptive tree

Search. To search for given key, we perform
normal search operation as in a B+-tree and
at every kth level we search in the bu�er
as well. The cost of searching all the nodes
along a path is O(logBR

N) and the cost of
searching all the bu�ers along the search path

is O(1k (BU/BR) logBR
N). Hence the total

number of read I/Os during search is given by
O((1 + BU

k·BR
) logBR

N).

Update. To perform an update, we simply add
an update record to the bu�er at the root. If
the at any internal node gets full, then we �ush
all the records in that bu�er to the next lower-
level bu�ers (or to the leaves, if there are no
bu�ers below). Since the branching factor of each
node is Θ(BR), the number of next-level bu�ers
is O((BR)

k). Assuming that BU ≤ (BR)
k (oth-

erwise, the search cost will be quite high), in the
worst-case each update in the bu�er may have to
be pushed to a di�erent next-level bu�er. Thus
the cost of �ushing the bu�er is O(BU) write
I/Os, apart from the read cost. Thus, each up-
date takes O(1) write I/Os to be pushed to the
next-level bu�er, which is k levels below, or in
other wordsO(h/k) write I/Os to be pushed from
the root to a leaf. And the read cost is at most
one read I/O per level, or O(h) read I/Os overall.
Therefore the amortized cost of inserting an ele-

ment into the LA-tree is given by
logBR

N

k write
I/Os (assuming that BU is not too large com-
pared to BR), and O(logBR

N) read I/Os.

LA-tree performs better that B+-tree on FTL
if the number of write I/Os to perform an update
in LA-tree is smaller i.e.,

logBR
N

k < logBW
N

⇒ BW < (BR)
k.

For most practical values of BR and BW , the
above inequality holds even for k = 2, and hence
LA-tree performs better than B+-tree. The above
analysis does not take into account the read-cost
(i.e., the number of blocks read) while performing
an update. The read-cost is more for the LA tree
since in addition to searching in the nodes at each
level, it also has to search in the bu�ers. Also,
for the same reason, searches in the LA-tree are
slower when compared to the B+-tree.

The search and update costs of LA tree are
both inversely proportional to the parameter k.
Hence, it would seem to make sense to choose

3

k as large as possible (i.e., equal to the height of
the tree), in which case, the performance matches
that of B+-tree. But the actual performance of
LA tree is better than that of B+-tree in practice
as the bu�ers are �ushed adaptively during both
searches and updates, and bu�er sizes are also
not the same for all the nodes.

3.3 µ-tree: minimally updated tree

The minimally updated tree or µ-tree proposed
by Kang et al. [5] is a balanced tree similar to
B+-tree, which reduces the number of pages
written by using varying sizes for nodes depend-
ing on their distance from the root. It requires
a single �ash write operation to perform an
update to the tree, if no nodes are split during
the update.

N0
∗

N1
∗

N3 N4 N5
∗ N6

N2

N3

N1

N0

N4 N5 N6

N2

N3

N1

N0

N4 N5 N6

N2

N ′5

N ′1

N ′0

Invalid section of page
Pages before update

Update

Pages before update

Fig. 2: Update in a µ-tree. Updated nodes and
new nodes are marked with ∗ and ′ resp. The
pages are shown before and after the update.

Search. Searching in a µ-tree requires reading
the nodes along a root-to-leaf path. Since all
these might lie in di�erent pages in worst-case,
we might need O(h) read I/Os in the worst case
where h is the height of the tree.

Update. Update in a µ-tree involves O(h) read
I/Os to perform search and 1 write I/O, since
entire path is contained in one read-block. µ-tree
provides the same search and update costs as B+-
tree with FTL without the overheads.

3.4 FD-tree

The FD tree proposed by Li et al. [7] consist of
multiple levels, denoted as L0, L1, . . . , Lh−1. At
the top level, L0, it has a head tree which is a
small (i.e., constant height) B+-tree with node
size equal to the read-block size. Each of the
other levels, L1, . . . , Lh−1, is a sorted run of key
values stored in contiguous pages. Each level of
the tree has a capacity which is the maximum
number of elements that can be stored in that
level. The ratio of capacities between any two
adjacent levels is same, and is equal to rc. i.e.,
for 0 ≤ i ≤ h − 2, |Li+1| = rc · |Li|. If the FD-
tree contains N keys, then the height h (i.e., the
number of levels) of the FD-tree) is O(logrc N).

To support e�cient searches, in each level the
FD-tree stores entries called fences that point to
the immediate lower level. Given a search key
x, we call the page at level Li that contains the
largest key less than or equal to x as the target

page at level Li. The fences are chosen in such a
way that given a search key x, once we �nd the
target page at level Li, the fence pointer with
largest key value less than or equal to x in that
page points to the target page at level Li+1.

To search for a given key x, we �rst search in
the head tree, and then follow the appropriate
fence pointers to �nd the target pages at each
level, and search in those target pages. To
perform an insertion, we �rst insert the element
into the head tree. If at any time, the number
of elements in any level Li, for 0 ≤ i < h − 1,
exceeds its capacity, the FD-tree merges the
elements of Li with the elements in the adjacent
lower level Li+1 into a single sorted run (stored
in contiguous pages). In the merge process, the
tree uses only sequential writes and random
writes occur only in head tree. FD-tree performs
better thanl B+-tree for update operation in
�ash memory by converting random writes
(typically slow) to sequential writes.

Search. The search procedure �rst searches the
head tree, which requires O(1) read I/Os, and
then accesses one read-block at each of the h lev-

4

els. Thus the search cost is O(logrc N) read I/Os.

Update. Li et al. [7] show that the update cost
of FD-tree is amortized O(rc

f−rc logrc N) sequen-
tial I/Os, where f is the size of the read-block.
But this cost is in terms of read-blocks. Thus
to obtain the actual update cost of FD-tree, we
need to divide this by BW /BR. By choosing
rc = Θ(BR), we get the update cost to be
O((BR/BW) logBR

N) sequential write I/Os.

The search complexity of FD-tree is the same as
the search of B+-tree but the update cost of FD-
tree is better than that of B+-tree if

BR
BW

logBR
N < logBW

N
⇒ BR/ logBR < BW / logBW .

Since the function f(x) = x/ log x is an in-
creasing function, for x > 0, the update perfor-
mance of FD-tree is better than that of the B+-
tree. In addition, the FD-tree only uses sequential
writes.

4 Discussion and Future work

Data Search cost Update cost Reference
Structure (read I/Os) (write I/Os)

B+-tree O(logBR
N) O(logBW

N) [4]
B+-tree (w/ FTL) O(logBR

N) O(1) [3]

LA-tree O((1 + BU
k·BR

) logBR
N) O((1/k) logBR

N) [1]

FD-tree O(logBR
N) O((BR/BW) logBR

N) [7]
µ-tree O(h) O(1) [5]

Table 2: Complexity of operations in various data
structures in the general-cost model where the
actual update cost also includes read I/Os for
search. h = height of the tree.

We discussed the various B+-tree based index-
ing data structures which have been designed
speci�cally for �ash disks and analyzed the cost
of performing search and update operations in
the general-cost �ash memory model. Our fur-
ther plan is to analyze other indexing data struc-
tures proposed for �ash memory, namely In-
page logging [6], BFTL (B-tree �ash translation
layer) [10], FlashDB [8] and Lazy Update tree [9].
Table 2 summarizes the performance of the in-

dex structures that we have analyzed in terms of

the read and write I/Os. The search cost for all
the structures is essentially the same. The update
cost of µ-tree and B+ with FTL is better than
that LA-tree and the standard B+-tree without
FTL. For most practical values of BR, BW and
N , the FD-tree outperforms all the other struc-
tures, as its amortized update cost is less than
1 (for most practical values of the parameters),
and also since it has very few random writes.

References

1. Devesh Agrawal, Deepak Ganesan, Ramesh Sitara-

man, Yanlei Diao, and Shashi Singh. Lazy-adaptive

tree: an optimized index structure for �ash devices.

Proc. VLDB Endow., 2:361�372, 2009.
2. Deepak Ajwani, Andreas Beckmann, Riko Jacob, Ul-

rich Meyer, and Gabriel Moruz. On computational

models for �ash memory devices. In Jan Vahrenhold,

editor, SEA, volume 5526 of Lecture Notes in Com-

puter Science, pages 16�27. Springer, 2009.
3. Tae-Sun Chung, Dong-Joo Park, Sangwon Park,

Dong-Ho Lee, Sang-Won Lee, and Ha-Joo Song. A

survey of �ash translation layer. J. Syst. Archit.,

55:332�343, 2009.
4. Douglas Comer. Ubiquitous b-tree. ACM Computing

Surveys, 11:121�137, 1979.
5. Dongwon Kang, Dawoon Jung, Jeong-Uk Kang, and

Jin-Soo Kim. µ-tree: an ordered index structure for

nand �ash memory. In Proceedings of the 7th ACM

& IEEE international conference on Embedded soft-

ware, EMSOFT '07, pages 144�153. ACM, 2007.
6. Sang-Won Lee and Bongki Moon. Design of �ash-

based dbms: an in-page logging approach. In Proceed-

ings of the 2007 ACM SIGMOD international confer-

ence on Management of data, pages 55�66, 2007.
7. Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo,

and Ke Yi. Tree indexing on solid state drives. Proc.

VLDB Endow., 3:1195�1206, 2010.
8. Suman Nath and Aman Kansal. Flashdb: dynamic

self-tuning database for nand �ash. In Proceedings of

the 6th international conference on Information pro-

cessing in sensor networks, IPSN '07, pages 410�419.

ACM, 2007.
9. Sai Tung On, Haibo Hu, Yu Li, and Jianliang Xu.

Lazy-update b+-tree for �ash devices. In Proceedings

of the 2009 Tenth International Conference on Mo-

bile Data Management: Systems, Services and Mid-

dleware, MDM '09, pages 323�328. IEEE Computer

Society, 2009.
10. Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping Chang.

An e�cient b-tree layer implementation for �ash-

memory storage systems. ACM Trans. Embed. Com-

put. Syst., 6, 2007.

5

